No project description provided
Project description
Prompt Manager Quick Guide
Introduction
Prompt Manager The design and construction tool for large model prompt words guides users to generate more accurate, reliable, and expected output content by helping them design better prompt words. This tool can provide SDK development modes for both technical personnel and non-technical personnel, as well as interface interaction operation modes to meet the needs of different populations using large models. The main functions include model service management, scenario management, prompt word template management, prompt word development, and prompt word application. The specific features are as follows:
. Support docking with commonly used large language models, including OpenAl's GPT model and other open source or custom large language model access interfaces; Support the management of prompt word templates, scene and role management, preset commonly used prompt templates, including Zero shot, One shot, Few shot, COT, etc. Support interaction with the model through dialogue, and can develop prompt words during the dialogue process
. Supports the construction, organization, and operation of prompt workflows, and supports publishing prompt engineering workflows as prompt word applications
Reminder workflow supports customizable Python scripts to prompt personalized requirements for engineering business
Reminder workflows support docking with commonly used vector databases, such as Dingo-DB, Chroma, FAISS, etc. Reminder workflows preset commonly used toolkits, including text segmentation, text segmentation, text conversion, etc
Support publishing prompt workflows as prompt word applications, accessed through the HTTP interface, and exporting the application as an SDK
The prompt word engineering tool supports running in SDK mode and can be quickly integrated into the development environment to help developers complete the construction and use of the prompt word engineering
Modules
Prompt Template
The new way of programming models is through prompts. A prompt refers to the input to the model. This input is often constructed from multiple components. Prompt Manager provides web application ,and several python SDK functions to make constructing and working with prompts easy.
Large AI Model
Large AI Models of Prompt Manager is support to custom with many different Large AI Models by using json config file. and We also provide a preset OpenAI Large Language Models for easy use;
Prompt engineering
- Chat : We can have a conversation with the LLM through prompt template;
- Flow : To achieve complex business logic; I can build a workflow of the Prompt engineering to achieve a more complex and more practical business logic based workflow interacting with LLM;
Prompt Application
Prompt Application is a service for prompt flow ; We can publish a prompt flow to a prompt App,then we can run the flow on server at anywhere by http api;
Installation
To install Prompt Manager run
pip install
pip install promptmanager
Service management
service start
pmctl service start
Open Web browser with this URL http://localhost:9999/
service start with a port
pmctl service start -port 10000
service start set proxy
pmctl service start -proxy xxxxxxxxxx
service start set sqlite db path
pmctl service start -db /xxx/xxx/xxx/db.sqlite3
service stop
pmctl service stop
Environment setup
In order to make sure your prompt script run successfully your need to prepare Python Environment first;
HTTP Request
If your already publish a Prompt Flow to an Application ;
curl http://localhost:9999/api/app/<appid>/run -X POST -H 'appkey:xxxxxxxxxxxx' -H 'Content-Type:application/json' -d '{"variables":{"title":"","number":500}}'
HTTP Request with File
First upload your file like this:
curl http://localhost:9999/api/app/<appid>/upload -F 'file=@/opt/knowledge_base.txt'
Then you will get the HTTP response result like this:
{
"code":0,
"data":{
"uploadFilePath":"/mnt/promptmanager/tmp/upload/2023-03-08/xxxxxxxxxxxxxxxxx/knowledge_base.txt"
}
}
Then get the uploadFilePath from the json and put it into the "file" variable
curl http://localhost:9999/api/app/<appid>/run -X POST -H 'appkey:xxxxxxxxxxxx' -H 'Content-Type:application/json' -d '{"variables":{"title":"","number":500,"file":"/mnt/promptmanager/tmp/upload/2023-03-08/xxxxxxxxxxxxxxxxx/knowledge_base.txt"}}'
Python SDK
Prompt Template
from promptmanager.runtime.template import PMPromptTemplate
role_prompt = "i am role_prompt"
prompt_template = PMPromptTemplate("user","Tell me a ${adjective} joke about ${content}.",role_prompt)
variables={
"adjective":"funny",
"content":"chickens"
}
prompt_template.message(variables)
- Run prompt manager chat
from promptmanager.runtime.template import PMPromptTemplate
from promptmanager.runtime.template import PMChatPromptTemplate
chat_prompt_template = PMChatPromptTemplate(
[
PMPromptTemplate("user","Tell me a ${adjective} joke about ${content}.","i am role_prompt2"),
PMPromptTemplate("system","Your name is ${name}.","i am role_prompt1")
]
)
variables={
"adjective":"funny",
"content":"chickens",
"name":"Bob"
}
chat_prompt_template.messages(variables)
- OpenAI LLM
from promptmanager.runtime.model import PMOpenAIPMLLM
api_key = "xxxxxx-xxxxxxxxxxxxxxxxxxxx"
pmOpenAIPMLLM = PMOpenAIPMLLM.load_from_openai_key(api_key)
message = [{"role": "user", "content": "我要写一本书"}, {"role": "user", "content": "名字叫做《我和你》"}]
params = {'temperature':0.8}
result = pmOpenAIPMLLM.request_by_message(message, params)
- Fake LLM
from promptmanager.runtime.model import PMFakeLLM
response = [
'Action: Python REPL\nAction Input: chatGpt principle',
'Final Answer: mock result'
]
pmFakeLLM = PMFakeLLM(response)
message = [{"role": "user", "content": "我要写一本书"}, {"role": "user", "content": "名字叫做《我和你》"}]
result = pmFakeLLM.request_result_by_message(message)
- Semantic recall from Vector Database
from promptmanager.runtime.tools.vectordatabase import ChromaReader
from promptmanager.runtime.embedding import OpenAIEmbedding
openai_enbedding=OpenAIEmbedding(apikey="xxxxxxxxxxxxxxxxx")
chroma_reader= ChromaReader(connection={"url":"","username":"dcuser","password":"xxxxxx"},embedding=openai_enbedding)
- Build prompt flow
import threading
from promptmanager.runtime.model import PMLLM
from promptmanager.runtime.flow import PMFlow
if __name__ == '__main__':
from promptmanager.runtime.flow import PMFlow
# Step 1 init new PMFlow
pm_flow = PMFlow(name="flow_name")
# Step 2 get input_node and output_node
input_node = pm_flow.get_input_node()
output_node = pm_flow.get_output_node()
input_node.show_io_info()
# $>INFO: this is IOs of "input"::
# $>INFO: outputs:[{'name': 'variable_assignment', 'type': 'any', 'defaultValue': None, 'value': None}]
output_node.show_io_info()
# $>INFO: this is IOs of "output":
# $>INFO: inputs:[{'name': 'result1', 'type': 'any', 'defaultValue': None, 'value': None}]
# Step 3 define a prompt node
from promptmanager.runtime.flow import PMFlowTemplateNode
from promptmanager.runtime.template import PMPromptTemplate
template_content = """
I want you act a famous novelist,
I want to write a science fiction,
The title is ${title} and number of words require ${number}.
"""
role_name = "famous novelist"
prompt_tempalte = PMPromptTemplate(template_content=template_content, role_prompt=role_name)
openai_llm = PMLLM.load_from_path(path="../model/config.json")
openai_llm.show_params_info()
model_param_value = {
"OPENAI_API_KEY": "xxxxxx-xxxxxxxxxxxxxxxxxxxx"
}
pm_template_node = PMFlowTemplateNode.from_template(name="prompt_tempalte_node", template=prompt_tempalte,
model=openai_llm, model_params_value=model_param_value)
pm_template_node.show_io_info()
# $>INFO: this is IOs of "prompt_tempalte_node":
# $>INFO: inputs:[{'name': 'title', 'type': 'text', 'defaultValue': '', 'value': None}, {'name': 'number', 'type': 'text', 'defaultValue': '', 'value': None}]
# $>INFO: outputs:[{'name': 'output', 'type': 'text', 'defaultValue': '', 'value': ''}]
pm_template_node.show_info()
# $>INFO: this is node info of "prompt_tempalte_node":
# $>INFO: node info: {"id": "14e7709a-afd7-4eae-a100-ffa92d9cc6d5", "name": "prompt_tempalte_node", "module_id": null, "module_name": null, "module_type": "prompt", "left": null, "top": null, "description": null, "params": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}, {"name": "model_config", "type": "text", "value": "{\"protocol\":\"http\",\"method\":\"POST\",\"url\":\"https://api.openai.com/v1/chat/completions\",\"header\":{\"ContentType\":\"application/json\",\"Authorization\":\"Bearer ${OPENAI_API_KEY}\"},\"modelRole\":{\"user\":\"user\",\"system\":\"system\",\"assistant\":\"assistant\"},\"requestBody\":{\"model\":\"gpt-3.5-turbo-0613;gpt-3.5-turbo;gpt-3.5-turbo-16k-0613;gpt-3.5-turbo-16k;gpt-4-0613;gpt-4-32k-0613;gpt-4;gpt-4-32k\",\"messages\":{\"role\":\"${role}\",\"content\":\"${content}\"},\"temperature\":0.7,\"stream\":true},\"responseBody\":{\"id\":\"chatcmpl-7lZq4UwSCrkvyOTUcyReAMXpAydSQ\",\"object\":\"chat.completion\",\"created\":\"1691573536\",\"model\":\"gpt-3.5-turbo-0613\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"${result_context}\"},\"finish_reason\":\"stop\"}],\"usage\":{\"prompt_tokens\":36,\"completion_tokens\":104,\"total_tokens\":140}},\"responseErrorBody\":{\"error\":{\"message\":\"$errorMessage\",\"type\":\"invalid_request_error\",\"param\":null,\"code\":null}}}"}, {"name": "model_param_define", "type": "text", "value": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}]}], "inputs": [{"name": "title", "type": "text", "defaultValue": "", "value": null}, {"name": "number", "type": "text", "defaultValue": "", "value": null}], "outputs": [{"name": "output", "type": "text", "defaultValue": "", "value": ""}], "prompt": "\n I want you act a famous novelist,\n I want to write a science fiction,\n The title is ${title} and number of words require ${number}.\n "}
pm_flow.add_node(pm_template_node)
# Step 4 define a tools script node
from promptmanager.runtime.flow import PMFlowScriptNode
script_node = PMFlowScriptNode(name="script_node", path="../script/python3_script.py")
input = {
"name": "input",
"type": "text",
"defaultValue": "this is single input"
}
script_node.add_input(input)
# inputs = [{
# "name": "input1",
# "type": "text",
# "defaultValue": "this is input1 of inputs"
# }, {
# "name": "input2",
# "type": "text",
# "defaultValue": "this is input2 of inputs"
# }]
# script_node.add_inputs(inputs)
output = {
"name": "output",
"type": "text",
"defaultValue": "this is single output"
}
script_node.add_output(output)
# outputs = [{
# "name": "output1",
# "type": "text",
# "defaultValue": "this is output1 of outputs"
# }, {
# "name": "output2",
# "type": "text",
# "defaultValue": "this is output2 of outputs"
# }]
# script_node.add_outputs(outputs)
script_node.show_io_info()
# $>INFO: this is IOs of "script_node":
# $>INFO: inputs:[{'name': 'input', 'type': 'text', 'defaultValue': 'this is single input'}]
# $>INFO: outputs:[{'name': 'output', 'type': 'text', 'defaultValue': 'this is single output'}]
script_node.show_info()
# $>INFO: this is node info of "script_node":
# $>INFO: node info: {"id": "eed4b20e-112e-435e-8a65-a2d513a93b0e", "name": "script_node", "module_id": "00000000-0000-0000-1111-000000000001", "module_name": null, "module_type": "script", "left": null, "top": null, "description": "script_node", "params": {"script": [{"name": "script", "type": "text", "default_value": "../script/python3_script.py", "value": "../script/python3_script.py"}]}, "inputs": [{"name": "input", "type": "text", "defaultValue": "this is single input"}], "outputs": [{"name": "output", "type": "text", "defaultValue": "this is single output"}], "script_path": "../script/python3_script.py"}
pm_flow.add_node(script_node)
# Step 5 link nodes
pm_flow.add_edge(source_node=input_node, source_node_output_name="variable_assignment",
target_node=pm_template_node, target_node_input_name="title")
pm_flow.add_edge(source_node=input_node, source_node_output_name="variable_assignment",
target_node=pm_template_node, target_node_input_name="number")
pm_flow.add_edge(source_node=pm_template_node, source_node_output_name="output",
target_node=script_node, target_node_input_name="input")
pm_flow.add_edge(source_node=script_node, source_node_output_name="output",
target_node=output_node, target_node_input_name="result1")
pm_flow.show_info()
# $>INFO: this is the flow info of "flow_name":
# $>INFO: info: {"id": "e56fb350-9b1f-4ac0-8179-0f10c9cc1543", "name": "flow_name", "nodes": [{"id": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "name": "input", "module_id": "00000000-0000-0000-0000-000000000001", "module_name": "Input", "module_type": "input", "left": null, "top": null, "description": "Input", "params": [{"variable": "title", "type": "text", "defaultValue": "", "value": null}, {"variable": "number", "type": "text", "defaultValue": "", "value": null}], "inputs": [], "outputs": [{"name": "variable_assignment", "type": "any", "defaultValue": null, "value": null}]}, {"id": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "name": "prompt_tempalte_node", "module_id": null, "module_name": null, "module_type": "prompt", "left": null, "top": null, "description": null, "params": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}, {"name": "model_config", "type": "text", "value": "{\"protocol\":\"http\",\"method\":\"POST\",\"url\":\"https://api.openai.com/v1/chat/completions\",\"header\":{\"ContentType\":\"application/json\",\"Authorization\":\"Bearer ${OPENAI_API_KEY}\"},\"modelRole\":{\"user\":\"user\",\"system\":\"system\",\"assistant\":\"assistant\"},\"requestBody\":{\"model\":\"gpt-3.5-turbo-0613;gpt-3.5-turbo;gpt-3.5-turbo-16k-0613;gpt-3.5-turbo-16k;gpt-4-0613;gpt-4-32k-0613;gpt-4;gpt-4-32k\",\"messages\":{\"role\":\"${role}\",\"content\":\"${content}\"},\"temperature\":0.7,\"stream\":true},\"responseBody\":{\"id\":\"chatcmpl-7lZq4UwSCrkvyOTUcyReAMXpAydSQ\",\"object\":\"chat.completion\",\"created\":\"1691573536\",\"model\":\"gpt-3.5-turbo-0613\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"${result_context}\"},\"finish_reason\":\"stop\"}],\"usage\":{\"prompt_tokens\":36,\"completion_tokens\":104,\"total_tokens\":140}},\"responseErrorBody\":{\"error\":{\"message\":\"$errorMessage\",\"type\":\"invalid_request_error\",\"param\":null,\"code\":null}}}"}, {"name": "model_param_define", "type": "text", "value": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}]}], "inputs": [{"name": "title", "type": "text", "defaultValue": "", "value": null}, {"name": "number", "type": "text", "defaultValue": "", "value": null}], "outputs": [{"name": "output", "type": "text", "defaultValue": "", "value": ""}], "prompt": "\n I want you act a famous novelist,\n I want to write a science fiction,\n The title is ${title} and number of words require ${number}.\n "}, {"id": "b163265f-f05d-4c7a-b6e8-a41997685477", "name": "script_node", "module_id": "00000000-0000-0000-1111-000000000001", "module_name": null, "module_type": "script", "left": null, "top": null, "description": "script_node", "params": {"script": [{"name": "script", "type": "text", "default_value": "../script/python3_script.py", "value": "../script/python3_script.py"}]}, "inputs": [{"name": "input", "type": "text", "defaultValue": "this is single input"}], "outputs": [{"name": "output", "type": "text", "defaultValue": "this is single output"}], "script_path": "../script/python3_script.py"}, {"id": "663a1619-a6ec-457a-ae30-854dd7234555", "name": "output", "module_id": "00000000-0000-0000-0000-000000000002", "module_name": "Output", "module_type": "output", "left": null, "top": null, "description": "Output", "params": [], "inputs": [{"name": "result1", "type": "any", "defaultValue": null, "value": null}, {"name": "result2", "type": "any", "defaultValue": null, "value": null}], "outputs": []}], "edges": [{"source_node": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "source_output_name": "variable_assignment", "target_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "target_input_name": "title"}, {"source_node": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "source_output_name": "variable_assignment", "target_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "target_input_name": "number"}, {"source_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "source_output_name": "output", "target_node": "b163265f-f05d-4c7a-b6e8-a41997685477", "target_input_name": "input"}, {"source_node": "b163265f-f05d-4c7a-b6e8-a41997685477", "source_output_name": "output", "target_node": "663a1619-a6ec-457a-ae30-854dd7234555", "target_input_name": "result1"}], "params": [], "flow_result": {"flow_id": null, "flow_name": null, "start_time": null, "end_time": null, "status": null, "nodes_info": null, "outputs": null}}
# save pmflow
pm_flow.save(save_path="/opt/data/text_pm.pmflow")
# Step 5 pmflow run
pm_flow.show_variables()
# $>INFO: this is the flow variables of "flow_name":
# $>INFO: variables:[{"variable": "title", "type": "text", "defaultValue": "", "value": null}, {"variable": "number", "type": "text", "defaultValue": "", "value": null}]
pm_flow.run(variables={
"title": "trip",
"number": "500"
}, run_async=False)
# get flow run result
# pm_flow.show_result(output_name="result1", wait_finish=False)
pm_flow.show_result()
# flow_result = pm_flow.get_result(wait_finish=True)
# result = None
# while pm_flow.get_result(wait_finish=False).is_finish():
# result = pm_flow.get_result(wait_finish=True)
- Load pmflow from disk
from promptmanager.runtime.flow import PMFlow
# Load pmflow from disk
pmflow=PMFlow.load(file_path="/opt/data/text_pm.pmflow");
pmflow.show_variables()
#$>this is the variables of "xxxxxxxxxxxxxxx":
#$>input_variables:[{"name":"file_path","type":"text"}]
#$>output_variables:[{"name":"text_output","type":"text"}]
variables={"title":"Black hole traversal","number":500}
result = pmflow.run(variables=variables)
- publish pmflow to web app
from promptmanager.runtime.app import PMApp
from promptmanager.runtime.flow import PMFlow
pmFlow = PMFlow.load('/opt/data/text_pm.pmflow');
# name is not required, it can define flow and app name
pmApp = PMApp.publish_from_flow(pmFlow, 'http://127.0.0.1:8888', name='test')
variables = {'title': 'Black hole traversal', 'number': 500}
pmApp.run_by_pm_flow(variables=variables)
pmApp.show_result()
- Run prompt manager application from web API
from promptmanager.runtime.app import PMApp
variables = {'title': 'Black hole traversal', 'number': 500}
url = 'http://127.0.0.1:8888/api/app/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/run'
PMApp.run_by_app_url(url, variables)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file PromptManager-0.0.27.tar.gz
.
File metadata
- Download URL: PromptManager-0.0.27.tar.gz
- Upload date:
- Size: 2.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5021253804a85940853283866eefb43bfe6624d9b46cd4856105e4ba5f24d649 |
|
MD5 | de2e8d1a209b2f827f129c13271e2104 |
|
BLAKE2b-256 | 1c76a5b60a0ff995c9de11ea0b1f104c865b0e84993b542b0e4a78c38e70230a |
File details
Details for the file PromptManager-0.0.27-py3-none-any.whl
.
File metadata
- Download URL: PromptManager-0.0.27-py3-none-any.whl
- Upload date:
- Size: 2.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e92d42678405c50fd1811ae38f9ee4c13c799105d077fdba509f3ce6c303a13 |
|
MD5 | b6925afe24bca0dac5e919815de9e35f |
|
BLAKE2b-256 | fe70d31f7c04bdadb59c0a57fc8e704bbd8df3ed14a2e42db9cf8c89686b89af |