Skip to main content

No project description provided

Project description

Prompt Manager Quick Guide

Introduction

Prompt Manager is a design and construction tool for Large Language Model prompts. It guides users to generate more accurate, reliable, and expected output content by helping them design better prompts. This tool provides SDK development modes for both technical and non-technical users, as well as interface interaction operation modes, to meet the needs of different populations using large models.

The main functions include model service management, scenario management, prompt template management, prompt development, and prompt application. The specific features are as follows:

1.Supports docking with commonly used large language models, including OpenAl's GPT model and other open source or custom large language model access interfaces;

2.Supports the management of prompt templates, scene and role management, preset commonly used prompt templates, including Zero-shot, Few-shot, COT, etc;

3.Supports interaction with the model through dialogue, and can develop prompts during the dialogue process;

4.Supports the construction, organization, and operation of prompt flows, and supports publishing flows as prompt applications;

5.Reminder workflow supports customizable Python scripts to meet personalized requirements;

6.Reminder workflows support docking with commonly used vector databases, such as Dingo-DB, Chroma, FAISS, etc;

7.Reminder workflows preset commonly used toolkits, including text segmentation, text segmentation, text conversion, etc;

8.Supports publishing prompt workflows as prompt word applications, accessed through the HTTP interface, and exporting the application as an SDK;

9.Supports running in SDK mode and can be quickly integrated into the development environment.

Modules

Prompt Template

The new way of programming models is through prompts. A prompt refers to the input to the model. This input is often constructed from multiple components. Prompt Manager provides web application ,and several python SDK functions to make constructing and working with prompts easy.

Large AI Model

Large AI Models of Prompt Manager is support to custom with many different Large AI Models by using json config file. and We also provide a preset OpenAI Large Language Models for easy use;

Prompt engineering

  • Chat : We can have a conversation with the LLM through prompt template;
  • Flow : To achieve complex business logic; I can build a workflow of the Prompt engineering to achieve a more complex and more practical business logic based workflow interacting with LLM;

Prompt Application

Prompt Application is a service for prompt flow ; We can publish a prompt flow to a prompt App,then we can run the flow on server at anywhere by http api;

一、Installation

To install Prompt Manager run

pip install

pip install promptmanager

二、Service management

  • service start
pmctl service start

Open Web browser with this URL http://127.0.0.1:8888/

  • service start with a port
pmctl service start -port 10000
  • service start set proxy
pmctl service start -proxy xxxxxxxxxx
  • service start set sqlite db path
pmctl service start -db /xxx/xxx/xxx/db.sqlite3
  • service stop
pmctl service stop

三、Environment setup

In order to make sure your prompt script run successfully your need to prepare Python Environment first;

HTTP Request

If your already publish a Prompt Flow to an Application ;

curl http://127.0.0.1:8888/api/app/<appid>/run -X POST  -H 'Content-Type:application/json' -d '{"variables":[{"title":"","number":500}]}'

Python SDK

Prompt Template

from promptmanager.runtime.template import PMPromptTemplate
role_prompt = "i am role_prompt"
prompt_template = PMPromptTemplate("user","Tell me a ${adjective} joke about ${content}.",role_prompt)

variables={
            "adjective":"funny",
    		"content":"chickens"
          }

prompt_template.message(variables)
  • Run prompt manager chat
from promptmanager.runtime.template import PMPromptTemplate
from promptmanager.runtime.template import PMChatPromptTemplate
chat_prompt_template = PMChatPromptTemplate(
    [
        PMPromptTemplate("user","Tell me a ${adjective} joke about ${content}.","i am role_prompt2"),
        PMPromptTemplate("system","Your name is ${name}.","i am role_prompt1")
    ]
)
 

variables={
            "adjective":"funny",
    		"content":"chickens",
            "name":"Bob"
          }
chat_prompt_template.messages(variables)
  • OpenAI LLM
  from promptmanager.runtime.model import PMOpenAIPMLLM

  api_key = "xxxxxx-xxxxxxxxxxxxxxxxxxxx"
  pmOpenAIPMLLM = PMOpenAIPMLLM.load_from_openai_key(api_key)

  message = [{"role": "user", "content": "我要写一本书"}, {"role": "user", "content": "名字叫做《我和你》"}]
  params = {'temperature':0.8}

  result = pmOpenAIPMLLM.request_by_message(message, params)
  • Fake LLM
from promptmanager.runtime.model import PMFakeLLM

response = [
  					'Action: Python REPL\nAction Input: chatGpt principle',
  					'Final Answer: mock result'
					]
pmFakeLLM = PMFakeLLM(response)

message = [{"role": "user", "content": "我要写一本书"}, {"role": "user", "content": "名字叫做《我和你》"}]
result = pmFakeLLM.request_result_by_message(message)
  • Semantic recall from Vector Database
from promptmanager.script.chroma_reader import ChromaReader
from promptmanager.script.openai_embeddings import PMOpenAIEmbeddings

openai_embeddings=PMOpenAIEmbeddings(openai_api_key="xxxxxxxxxxxxxxxxx")
chroma_reader= ChromaReader(host="",port="",collection_name="")
  • Build prompt flow
import threading

from promptmanager.runtime.model import PMLLM
from promptmanager.runtime.flow import PMFlow

if __name__ == '__main__':
    from promptmanager.runtime.flow import PMFlow

    # Step 1 init new PMFlow
    pm_flow = PMFlow(name="flow_name")

    # Step 2 get input_node and output_node
    input_node = pm_flow.get_input_node()
    output_node = pm_flow.get_output_node()

    input_node.show_io_info()
    # $>INFO: this is IOs of "input"::
    # $>INFO: outputs:[{'name': 'variable_assignment', 'type': 'any', 'defaultValue': None, 'value': None}]

    output_node.show_io_info()
    # $>INFO: this is IOs of "output":
    # $>INFO: inputs:[{'name': 'result1', 'type': 'any', 'defaultValue': None, 'value': None}]

    # Step 3 define a prompt node
    from promptmanager.runtime.flow import PMFlowTemplateNode
    from promptmanager.runtime.template import PMPromptTemplate

    template_content = """
    I want you act a famous novelist,
    I want to write a science fiction,
        The title is ${title} and number of words require ${number}.
    """
    role_name = "famous novelist"
    prompt_tempalte = PMPromptTemplate(template_content=template_content, role_prompt=role_name)

    openai_llm = PMLLM.load_from_path(path="../model/config.json")
    openai_llm.show_params_info()
    model_param_value = {
        "OPENAI_API_KEY": "xxxxxx-xxxxxxxxxxxxxxxxxxxx"
    }
    pm_template_node = PMFlowTemplateNode.from_template(name="prompt_tempalte_node", template=prompt_tempalte,
                                                        model=openai_llm, model_params_value=model_param_value)

    pm_template_node.show_io_info()
    # $>INFO: this is IOs of "prompt_tempalte_node":
    # $>INFO: inputs:[{'name': 'title', 'type': 'text', 'defaultValue': '', 'value': None}, {'name': 'number', 'type': 'text', 'defaultValue': '', 'value': None}]
    # $>INFO: outputs:[{'name': 'output', 'type': 'text', 'defaultValue': '', 'value': ''}]

    pm_template_node.show_info()
    # $>INFO: this is node info of "prompt_tempalte_node":
    # $>INFO: node info: {"id": "14e7709a-afd7-4eae-a100-ffa92d9cc6d5", "name": "prompt_tempalte_node", "module_id": null, "module_name": null, "module_type": "prompt", "left": null, "top": null, "description": null, "params": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}, {"name": "model_config", "type": "text", "value": "{\"protocol\":\"http\",\"method\":\"POST\",\"url\":\"https://api.openai.com/v1/chat/completions\",\"header\":{\"ContentType\":\"application/json\",\"Authorization\":\"Bearer ${OPENAI_API_KEY}\"},\"modelRole\":{\"user\":\"user\",\"system\":\"system\",\"assistant\":\"assistant\"},\"requestBody\":{\"model\":\"gpt-3.5-turbo-0613;gpt-3.5-turbo;gpt-3.5-turbo-16k-0613;gpt-3.5-turbo-16k;gpt-4-0613;gpt-4-32k-0613;gpt-4;gpt-4-32k\",\"messages\":{\"role\":\"${role}\",\"content\":\"${content}\"},\"temperature\":0.7,\"stream\":true},\"responseBody\":{\"id\":\"chatcmpl-7lZq4UwSCrkvyOTUcyReAMXpAydSQ\",\"object\":\"chat.completion\",\"created\":\"1691573536\",\"model\":\"gpt-3.5-turbo-0613\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"${result_content}\"},\"finish_reason\":\"stop\"}],\"usage\":{\"prompt_tokens\":36,\"completion_tokens\":104,\"total_tokens\":140}},\"responseErrorBody\":{\"error\":{\"message\":\"$errorMessage\",\"type\":\"invalid_request_error\",\"param\":null,\"code\":null}}}"}, {"name": "model_param_define", "type": "text", "value": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}]}], "inputs": [{"name": "title", "type": "text", "defaultValue": "", "value": null}, {"name": "number", "type": "text", "defaultValue": "", "value": null}], "outputs": [{"name": "output", "type": "text", "defaultValue": "", "value": ""}], "prompt": "\n    I want you act a famous novelist,\n    I want to write a science fiction,\n        The title is ${title} and number of words require ${number}.\n    "}

    pm_flow.add_node(pm_template_node)

    # Step 4 define a tools script node
    from promptmanager.runtime.flow import PMFlowScriptNode

    script_node = PMFlowScriptNode(name="script_node", path="../script/python3_script.py")

    input = {
        "name": "input",
        "type": "text",
        "defaultValue": "this is single input"
    }
    script_node.add_input(input)

    # inputs = [{
    #     "name": "input1",
    #     "type": "text",
    #     "defaultValue": "this is input1 of inputs"
    # }, {
    #     "name": "input2",
    #     "type": "text",
    #     "defaultValue": "this is input2 of inputs"
    # }]
    # script_node.add_inputs(inputs)

    output = {
        "name": "output",
        "type": "text",
        "defaultValue": "this is single output"
    }
    script_node.add_output(output)

    # outputs = [{
    #     "name": "output1",
    #     "type": "text",
    #     "defaultValue": "this is output1 of outputs"
    # }, {
    #     "name": "output2",
    #     "type": "text",
    #     "defaultValue": "this is output2 of outputs"
    # }]
    # script_node.add_outputs(outputs)

    script_node.show_io_info()
    # $>INFO: this is IOs of "script_node":
    # $>INFO: inputs:[{'name': 'input', 'type': 'text', 'defaultValue': 'this is single input'}]
    # $>INFO: outputs:[{'name': 'output', 'type': 'text', 'defaultValue': 'this is single output'}]

    script_node.show_info()
    # $>INFO: this is node info of "script_node":
    # $>INFO: node info: {"id": "eed4b20e-112e-435e-8a65-a2d513a93b0e", "name": "script_node", "module_id": "00000000-0000-0000-1111-000000000001", "module_name": null, "module_type": "script", "left": null, "top": null, "description": "script_node", "params": {"script": [{"name": "script", "type": "text", "default_value": "../script/python3_script.py", "value": "../script/python3_script.py"}]}, "inputs": [{"name": "input", "type": "text", "defaultValue": "this is single input"}], "outputs": [{"name": "output", "type": "text", "defaultValue": "this is single output"}], "script_path": "../script/python3_script.py"}

    pm_flow.add_node(script_node)

    # Step 5 link nodes
    pm_flow.add_edge(source_node=input_node, source_node_output_name="variable_assignment",
                     target_node=pm_template_node, target_node_input_name="title")
    pm_flow.add_edge(source_node=input_node, source_node_output_name="variable_assignment",
                     target_node=pm_template_node, target_node_input_name="number")

    pm_flow.add_edge(source_node=pm_template_node, source_node_output_name="output",
                     target_node=script_node, target_node_input_name="input")

    pm_flow.add_edge(source_node=script_node, source_node_output_name="output",
                     target_node=output_node, target_node_input_name="result1")

    pm_flow.show_info()
    # $>INFO: this is the flow info of "flow_name":
    # $>INFO: info: {"id": "e56fb350-9b1f-4ac0-8179-0f10c9cc1543", "name": "flow_name", "nodes": [{"id": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "name": "input", "module_id": "00000000-0000-0000-0000-000000000001", "module_name": "Input", "module_type": "input", "left": null, "top": null, "description": "Input", "params": [{"variable": "title", "type": "text", "defaultValue": "", "value": null}, {"variable": "number", "type": "text", "defaultValue": "", "value": null}], "inputs": [], "outputs": [{"name": "variable_assignment", "type": "any", "defaultValue": null, "value": null}]}, {"id": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "name": "prompt_tempalte_node", "module_id": null, "module_name": null, "module_type": "prompt", "left": null, "top": null, "description": null, "params": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}, {"name": "model_config", "type": "text", "value": "{\"protocol\":\"http\",\"method\":\"POST\",\"url\":\"https://api.openai.com/v1/chat/completions\",\"header\":{\"ContentType\":\"application/json\",\"Authorization\":\"Bearer ${OPENAI_API_KEY}\"},\"modelRole\":{\"user\":\"user\",\"system\":\"system\",\"assistant\":\"assistant\"},\"requestBody\":{\"model\":\"gpt-3.5-turbo-0613;gpt-3.5-turbo;gpt-3.5-turbo-16k-0613;gpt-3.5-turbo-16k;gpt-4-0613;gpt-4-32k-0613;gpt-4;gpt-4-32k\",\"messages\":{\"role\":\"${role}\",\"content\":\"${content}\"},\"temperature\":0.7,\"stream\":true},\"responseBody\":{\"id\":\"chatcmpl-7lZq4UwSCrkvyOTUcyReAMXpAydSQ\",\"object\":\"chat.completion\",\"created\":\"1691573536\",\"model\":\"gpt-3.5-turbo-0613\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"${result_content}\"},\"finish_reason\":\"stop\"}],\"usage\":{\"prompt_tokens\":36,\"completion_tokens\":104,\"total_tokens\":140}},\"responseErrorBody\":{\"error\":{\"message\":\"$errorMessage\",\"type\":\"invalid_request_error\",\"param\":null,\"code\":null}}}"}, {"name": "model_param_define", "type": "text", "value": [{"name": "OPENAI_API_KEY", "type": "string", "defaultValue": "password", "value": "password"}, {"name": "model", "type": "select", "defaultValue": "gpt-3.5-turbo,gpt-4.0", "value": "gpt-3.5-turbo,gpt-4.0"}, {"name": "message", "type": "jsonarray", "defaultValue": null, "value": "[{\"role\": \"${role}\", \"content\": \"${content}\"}]"}, {"name": "temperature", "type": "int", "defaultValue": 0.7, "value": 0.7}, {"name": "stream", "type": "string", "defaultValue": true, "value": true}, {"name": "result", "type": "jsonarray", "defaultValue": null, "value": null}]}], "inputs": [{"name": "title", "type": "text", "defaultValue": "", "value": null}, {"name": "number", "type": "text", "defaultValue": "", "value": null}], "outputs": [{"name": "output", "type": "text", "defaultValue": "", "value": ""}], "prompt": "\n    I want you act a famous novelist,\n    I want to write a science fiction,\n        The title is ${title} and number of words require ${number}.\n    "}, {"id": "b163265f-f05d-4c7a-b6e8-a41997685477", "name": "script_node", "module_id": "00000000-0000-0000-1111-000000000001", "module_name": null, "module_type": "script", "left": null, "top": null, "description": "script_node", "params": {"script": [{"name": "script", "type": "text", "default_value": "../script/python3_script.py", "value": "../script/python3_script.py"}]}, "inputs": [{"name": "input", "type": "text", "defaultValue": "this is single input"}], "outputs": [{"name": "output", "type": "text", "defaultValue": "this is single output"}], "script_path": "../script/python3_script.py"}, {"id": "663a1619-a6ec-457a-ae30-854dd7234555", "name": "output", "module_id": "00000000-0000-0000-0000-000000000002", "module_name": "Output", "module_type": "output", "left": null, "top": null, "description": "Output", "params": [], "inputs": [{"name": "result1", "type": "any", "defaultValue": null, "value": null}, {"name": "result2", "type": "any", "defaultValue": null, "value": null}], "outputs": []}], "edges": [{"source_node": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "source_output_name": "variable_assignment", "target_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "target_input_name": "title"}, {"source_node": "21ee3784-1f11-40b3-ada5-f7d18df787ac", "source_output_name": "variable_assignment", "target_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "target_input_name": "number"}, {"source_node": "122c66f7-09bc-47bb-af25-3f4dfcf6f351", "source_output_name": "output", "target_node": "b163265f-f05d-4c7a-b6e8-a41997685477", "target_input_name": "input"}, {"source_node": "b163265f-f05d-4c7a-b6e8-a41997685477", "source_output_name": "output", "target_node": "663a1619-a6ec-457a-ae30-854dd7234555", "target_input_name": "result1"}], "params": [], "flow_result": {"flow_id": null, "flow_name": null, "start_time": null, "end_time": null, "status": null, "nodes_info": null, "outputs": null}}

    # save pmflow
    pm_flow.save(save_path="/opt/data/text_pm.pmflow")

    # Step 5 pmflow run
    pm_flow.show_variables()
    # $>INFO: this is the flow variables of "flow_name":
    # $>INFO: variables:[{"variable": "title", "type": "text", "defaultValue": "", "value": null}, {"variable": "number", "type": "text", "defaultValue": "", "value": null}]

    pm_flow.run(variables={
        "title": "trip",
        "number": "500"
    }, run_async=False)

    # get flow run result
    # pm_flow.show_result(output_name="result1", wait_finish=False)
    pm_flow.show_result()

    # flow_result = pm_flow.get_result(wait_finish=True)

    # result = None
    # while pm_flow.get_result(wait_finish=False).is_finish():
    #     result = pm_flow.get_result(wait_finish=True)
  • Load pmflow from disk
from promptmanager.runtime.flow import PMFlow 

# Load pmflow from disk
pmflow=PMFlow.load(file_path="/opt/data/text_pm.pmflow");

pmflow.show_variables()
#$>this is the variables of "xxxxxxxxxxxxxxx":
#$>input_variables:[{"name":"file_path","type":"text"}]
#$>output_variables:[{"name":"text_output","type":"text"}]

variables={"title":"Black hole traversal","number":500}
result = pmflow.run(variables=variables)
  • publish pmflow to web app
from promptmanager.runtime.app import PMApp
from promptmanager.runtime.flow import PMFlow 

pmFlow = PMFlow.load('/opt/data/text_pm.pmflow');
# name is not required, it can define flow and app name
pmApp = PMApp.publish_from_flow(pmFlow, 'http://127.0.0.1:8888', name='test')
variables = {'title': 'Black hole traversal', 'number': 500}
pmApp.run_by_pm_flow(variables=variables)

pmApp.show_result()
  • Run prompt manager application from web API
from promptmanager.runtime.app import PMApp

variables = {'title': 'Black hole traversal', 'number': 500}
url = 'http://127.0.0.1:8888/api/app/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/run'
PMApp.run_by_app_url(url, variables)
  • Run prompt manager application with file

First upload your file like this:

curl http://127.0.0.1:8888/api/app/<appid>/upload -F 'file=@/opt/knowledge_base.txt'

Then you will get the HTTP response result like this:

{
  "code":0,
  "data":{
      "uploadFilePath":"/tmp/promptmanager/upload/2023-03-08/xxxxxxxxxxxxxxxxx/knowledge_base.txt"
  }
}

Then get the uploadFilePath from the json and put it into the "file" variable

curl http://127.0.0.1:8888/api/app/<appid>/run -X POST -H 'Content-Type:application/json' -d '{"variables":[{"variable": "filename", "type": "file", "defaultValue": "", "value": "/tmp/promptmanager/upload/2023-03-08/xxxxxxxxxxxxxxxxx/knowledge_base.txt"}]}'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PromptManager-0.0.33.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

PromptManager-0.0.33-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file PromptManager-0.0.33.tar.gz.

File metadata

  • Download URL: PromptManager-0.0.33.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for PromptManager-0.0.33.tar.gz
Algorithm Hash digest
SHA256 beef34d02f7ab91987c115366d22fd68bdd18be5962fa892bf0cf94942a6b629
MD5 8ebfa93afa1c338856ffe1b6b66a2ed8
BLAKE2b-256 5151cedb1587414163a58475581c1177f3ce910cec69ca52d186c17a7ffe233a

See more details on using hashes here.

File details

Details for the file PromptManager-0.0.33-py3-none-any.whl.

File metadata

File hashes

Hashes for PromptManager-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 03a0b90175b0e657a032ea1c8cf20523c34d4d40f843bcf04e93a398f20918cf
MD5 fbb420bbee00eb18999545f477c6c04f
BLAKE2b-256 a80093cc1fc32553284d5048c64596be4c3d46061cf1c6119eb6238e00e2a20b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page