Skip to main content

A flexible derivative-free solver for (bound constrained) general objective minimization

Project description

===================================================================================
Py-BOBYQA: Derivative-Free Solver for Bound-Constrained Minimization |PyPI Version|
===================================================================================
Py-BOBYQA is a flexible package for solving bound-constrained general objective minimization, without requiring derivatives of the objective. It is a Python implementation of the BOBYQA algorithm by Powell. Py-BOBYQA is particularly useful when evaluations of the objective function are expensive and/or noisy.

More details about Py-BOBYQA can be found in our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers, technical report, University of Oxford, (2018).

The original paper by Powell is: M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, technical report DAMTP 2009/NA06, University of Cambridge (2009), and the original Fortran implementation is available `here <http://mat.uc.pt/~zhang/software.html>`_.

If you are interested in solving least-squares minimization problems, you may wish to try `DFO-LS <https://github.com/numericalalgorithmsgroup/dfols>`_, which has the same features as Py-BOBYQA (plus some more), and exploits the least-squares problem structure, so performs better on such problems.

Documentation
-------------
See manual.pdf or `here <http://people.maths.ox.ac.uk/robertsl/pybobyqa>`_.

Requirements
------------
Py-BOBYQA requires the following software to be installed:

* Python 2.7 or Python 3 (http://www.python.org/)

Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):

* NumPy 1.11 or higher (http://www.numpy.org/)
* SciPy 0.18 or higher (http://www.scipy.org/)
* Pandas 0.17 or higher (http://pandas.pydata.org/)

Installation using pip
----------------------
For easy installation, use `pip <http://www.pip-installer.org/>`_ as root::

$ [sudo] pip install Py-BOBYQA

or alternatively *easy_install*::

$ [sudo] easy_install Py-BOBYQA

If you do not have root privileges or you want to install Py-BOBYQA for your private use, you can use::

$ pip install --user Py-BOBYQA

which will install Py-BOBYQA in your home directory.

Note that if an older install of Py-BOBYQA is present on your system you can use::

$ [sudo] pip install --upgrade Py-BOBYQA

to upgrade Py-BOBYQA to the latest version.

Manual installation
-------------------
Alternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/pybobyqa>`_ and unpack as follows:

.. code-block:: bash

$ git clone https://github.com/numericalalgorithmsgroup/pybobyqa
$ cd pybobyqa

Py-BOBYQA is written in pure Python and requires no compilation. It can be installed using:

.. code-block:: bash

$ [sudo] pip install .

If you do not have root privileges or you want to install Py-BOBYQA for your private use, you can use:

.. code-block:: bash

$ pip install --user .

instead.

Testing
-------
If you installed Py-BOBYQA manually, you can test your installation by running:

.. code-block:: bash

$ python setup.py test

Alternatively, the HTML documentation provides some simple examples of how to run Py-BOBYQA.

Examples
--------
Examples of how to run Py-BOBYQA are given in the `documentation <http://people.maths.ox.ac.uk/robertsl/pybobyqa>`_, and the `examples <https://github.com/numericalalgorithmsgroup/pybobyqa/tree/master/examples>`_ directory in Github.

Uninstallation
--------------
If Py-BOBYQA was installed using *pip* you can uninstall as follows:

.. code-block:: bash

$ [sudo] pip uninstall Py-BOBYQA

If Py-BOBYQA was installed manually you have to remove the installed files by hand (located in your python site-packages directory).

Bugs
----
Please report any bugs using GitHub's issue tracker.

License
-------
This algorithm is released under the GNU GPL license.

.. |PyPI Version| image:: https://img.shields.io/pypi/v/Py-BOBYQA.svg
:target: https://pypi.python.org/pypi/Py-BOBYQA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Py-BOBYQA-1.0.1.tar.gz (33.6 kB view details)

Uploaded Source

File details

Details for the file Py-BOBYQA-1.0.1.tar.gz.

File metadata

  • Download URL: Py-BOBYQA-1.0.1.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Py-BOBYQA-1.0.1.tar.gz
Algorithm Hash digest
SHA256 660f0869803bcc748cace58b04d8866d22054f7c8a25f029bef88e5964641815
MD5 b0acbef96ea415895f5982d7415eff1b
BLAKE2b-256 ba8b1a8c039b14799c817c42bef80907f93867609bede2725417d5cfb86f7212

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page