Skip to main content

A python package to plot complex heatmap

Project description

PyComplexHeatmap Downloads Downloads Downloads

PyComplexHeatmap is a Python package to plot complex heatmap (clustermap). Please click here for documentation.

Documentation:


https://dingwb.github.io/PyComplexHeatmap

PYPI

Wiki

wiki/layout
wiki/Parameters
wiki/Features

Dependencies:


  • matplotlib>=3.4.3
  • numpy
  • pandas
  • scipy
pip install --ignore-install matplotlib==3.5.1 numpy==1.20.3 pandas==1.4.1
pip install seaborn #only needed when call functions in tools.py

Installation


  1. Install using pip:
pip install PyComplexHeatmap

#upgrade from older version
pip install --upgrade PyComplexHeatmap
  1. Install the developmental version directly from github:
pip install git+https://github.com/DingWB/PyComplexHeatmap

if you have installed it previously and want to update it, please run pip uninstall PyComplexHeatmap and install from github again OR

git clone https://github.com/DingWB/PyComplexHeatmap
cd PyComplexHeatmap
python setup.py install

Usage


1. Simple Guide To Get started.

from PyComplexHeatmap import *

#Generate example dataset (random)
df = pd.DataFrame(['GroupA'] * 5 + ['GroupB'] * 5, columns=['AB'])
df['CD'] = ['C'] * 3 + ['D'] * 3 + ['G'] * 4
df['EF'] = ['E'] * 6 + ['F'] * 2 + ['H'] * 2
df['F'] = np.random.normal(0, 1, 10)
df.index = ['sample' + str(i) for i in range(1, df.shape[0] + 1)]
df_box = pd.DataFrame(np.random.randn(10, 4), columns=['Gene' + str(i) for i in range(1, 5)])
df_box.index = ['sample' + str(i) for i in range(1, df_box.shape[0] + 1)]
df_bar = pd.DataFrame(np.random.uniform(0, 10, (10, 2)), columns=['TMB1', 'TMB2'])
df_bar.index = ['sample' + str(i) for i in range(1, df_box.shape[0] + 1)]
df_scatter = pd.DataFrame(np.random.uniform(0, 10, 10), columns=['Scatter'])
df_scatter.index = ['sample' + str(i) for i in range(1, df_box.shape[0] + 1)]
df_heatmap = pd.DataFrame(np.random.randn(30, 10), columns=['sample' + str(i) for i in range(1, 11)])
df_heatmap.index = ["Fea" + str(i) for i in range(1, df_heatmap.shape[0] + 1)]
df_heatmap.iloc[1, 2] = np.nan

#Annotate the rows with sample4 > 0.5
df_rows = df_heatmap.apply(lambda x:x.name if x.sample4 > 0.5 else None,axis=1)
df_rows=df_rows.to_frame(name='Selected')
df_rows['XY']=df_rows.index.to_series().apply(lambda x:'A' if int(x.replace('Fea',''))>=15 else 'B')

#Create row annotations
row_ha = HeatmapAnnotation(
                           Scatter=anno_scatterplot(df_heatmap.sample4.apply(lambda x:round(x,2)),
                                            height=12,cmap='jet',legend=False),
                           Bar=anno_barplot(df_heatmap.sample4.apply(lambda x:round(x,2)),
                                            height=16,cmap='rainbow',legend=False),
                           selected=anno_label(df_rows,colors='red',relpos=(-0.05,0.4)),
                           label_kws={'rotation':30,'horizontalalignment':'left','verticalalignment':'bottom'},
                            axis=0,verbose=0)

#Create column annotations
col_ha = HeatmapAnnotation(label=anno_label(df.AB, merge=True,rotation=10),
                           AB=anno_simple(df.AB,add_text=True),axis=1,
                           CD=anno_simple(df.CD,add_text=True),
                           EF=anno_simple(df.EF,add_text=True,
                                            legend_kws={'frameon':True}),
                           G=anno_boxplot(df_box, cmap='jet',legend=False),
                           verbose=0)

plt.figure(figsize=(5.5, 6.5))
cm = ClusterMapPlotter(data=df_heatmap, top_annotation=col_ha,right_annotation=row_ha,
                       col_cluster=True,row_cluster=True,
                       col_split=df.AB,row_split=2, 
                       col_split_gap=0.5,row_split_gap=0.8,
                       label='values',row_dendrogram=True,
                       show_rownames=False,show_colnames=True,
                       tree_kws={'row_cmap': 'Set1'},verbose=0,legend_gap=5,
                       cmap='RdYlBu_r',xticklabels_kws={'labelrotation':-45,'labelcolor':'blue'})
#plt.savefig("example0.pdf", bbox_inches='tight')
plt.show()

Example output

Click picture to view the source code

More Examples

https://dingwb.github.io/PyComplexHeatmap/build/html/more_examples.html

Call for Contributions


The PyComplexHeatmap project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us (ding.wu.bin.gm@gmail.com).

Writing code isn’t the only way to contribute to PyComplexHeatmap. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • put forward some new ideas about update.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyComplexHeatmap-1.4.3.tar.gz (54.9 kB view details)

Uploaded Source

Built Distribution

PyComplexHeatmap-1.4.3-py3-none-any.whl (56.8 kB view details)

Uploaded Python 3

File details

Details for the file PyComplexHeatmap-1.4.3.tar.gz.

File metadata

  • Download URL: PyComplexHeatmap-1.4.3.tar.gz
  • Upload date:
  • Size: 54.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for PyComplexHeatmap-1.4.3.tar.gz
Algorithm Hash digest
SHA256 f0e718569879999cfbfb02eacb746d61290bd355cba217a5cfcdd961009247df
MD5 e740cf93e2d5568d0b13499f30265768
BLAKE2b-256 543f1c47450168b58cf7ca78a785bab9491df19e805156227769be82defc7a28

See more details on using hashes here.

File details

Details for the file PyComplexHeatmap-1.4.3-py3-none-any.whl.

File metadata

File hashes

Hashes for PyComplexHeatmap-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 38cbaf25025b96b3e55b65e9bf3b7269c07f84006a6cee0e92469942f86efee7
MD5 acffb334968cfcb53ecf822bb2730b01
BLAKE2b-256 618f20cbbc18f3557f844dce861a6571716448e94b9c7b1b3de5f61cb8c97432

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page