Skip to main content

A Python Deep Reinforcement Learning library

Project description

PyDRL

A Python Deep Reinforcement Learning library. We make the whl so that you don't have to reinvent it

To Do

  1. Agents -
  • Random Agent
  • CEM Agent
  • DQN
  • DQN with Target Value Network
  • Double DQN
  • Dueling DQN
  • Policy Gradient
  • Actor Critic
  • Advantage Actor Critic - A2C
  • Asynchronous Advantage Actor Critic - A3C
  1. Utilities -
  • Experience Replay
  • Prioritised Experience Replay
  • Ring Buffer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDRL-0.0.1.tar.gz (1.2 kB view details)

Uploaded Source

Built Distribution

PyDRL-0.0.1-py3-none-any.whl (1.5 kB view details)

Uploaded Python 3

File details

Details for the file PyDRL-0.0.1.tar.gz.

File metadata

  • Download URL: PyDRL-0.0.1.tar.gz
  • Upload date:
  • Size: 1.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyDRL-0.0.1.tar.gz
Algorithm Hash digest
SHA256 dbc4dc1757d4dc9e31712eeaf185b3c83335c9bd71e5950a5c36775946b112be
MD5 e715f015c4ce3db4f533f41be8283a4b
BLAKE2b-256 aeba69a7afc0c7d54c34190f856f696c0e4c90d1ae2c6c24af709460f3d0067d

See more details on using hashes here.

File details

Details for the file PyDRL-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for PyDRL-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 367600af10b651e81dea635b6f0cdbf1dc1104ea9bc0cdfa317ddfc18cca22fc
MD5 8e4670acdccf8f5ebeb2243a99e97989
BLAKE2b-256 8fe4899264e35eee658ff719d0100f8b2e6e519f344824113aacdaaa6cd06346

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page