Skip to main content

A full-featured and lightweight library for discrete-time Markov chains analysis.

Project description

PyDTMC is a full-featured and lightweight library for discrete-time Markov chains analysis. It provides classes and functions for creating, manipulating, simulating and visualizing Markov processes.

Status: Build Docs Coverage
Info: License Lines Size
PyPI: Version Python Wheel Downloads
Conda: Version Python Platforms Downloads
Donation: PayPal

Requirements

The Python environment must include the following packages:

Notes:

  • It's recommended to install Graphviz and pydot before using the plot_graph function.
  • The packages pytest and pytest-benchmark are required for performing unit tests.
  • The package Sphinx is required for building the package documentation.

Installation & Upgrade

PyPI:

$ pip install PyDTMC
$ pip install --upgrade PyDTMC

Git:

$ pip install https://github.com/TommasoBelluzzo/PyDTMC/tarball/master
$ pip install --upgrade https://github.com/TommasoBelluzzo/PyDTMC/tarball/master

$ pip install git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC
$ pip install --upgrade git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC

Conda:

$ conda install -c conda-forge pydtmc
$ conda update -c conda-forge pydtmc

$ conda install -c tommasobelluzzo pydtmc
$ conda update -c tommasobelluzzo pydtmc

Usage: MarkovChain Class

The MarkovChain class can be instantiated as follows:

>>> p = [[0.2, 0.7, 0.0, 0.1], [0.0, 0.6, 0.3, 0.1], [0.0, 0.0, 1.0, 0.0], [0.5, 0.0, 0.5, 0.0]]
>>> mc = MarkovChain(p, ['A', 'B', 'C', 'D'])
>>> print(mc)

DISCRETE-TIME MARKOV CHAIN
 SIZE:           4
 RANK:           4
 CLASSES:        2
  > RECURRENT:   1
  > TRANSIENT:   1
 ERGODIC:        NO
  > APERIODIC:   YES
  > IRREDUCIBLE: NO
 ABSORBING:      YES
 MONOTONE:       NO
 REGULAR:        NO
 REVERSIBLE:     YES
 SYMMETRIC:      NO

Below a few examples of MarkovChain properties:

>>> print(mc.is_ergodic)
False

>>> print(mc.recurrent_states)
['C']

>>> print(mc.transient_states)
['A', 'B', 'D']

>>> print(mc.steady_states)
[array([0.0, 0.0, 1.0, 0.0])]

>>> print(mc.is_absorbing)
True

>>> print(mc.fundamental_matrix)
[[1.50943396, 2.64150943, 0.41509434]
 [0.18867925, 2.83018868, 0.30188679]
 [0.75471698, 1.32075472, 1.20754717]]
 
>>> print(mc.kemeny_constant)
5.547169811320755

>>> print(mc.entropy_rate)
0.0

Below a few examples of MarkovChain methods:

>>> print(mc.absorption_probabilities())
[1.0 1.0 1.0]

>>> print(mc.expected_rewards(10, [2, -3, 8, -7]))
[44.96611926, 52.03057032, 88.00000000, 51.74779651]

>>> print(mc.expected_transitions(2))
[[0.0850, 0.2975, 0.0000, 0.0425]
 [0.0000, 0.3450, 0.1725, 0.0575]
 [0.0000, 0.0000, 0.7000, 0.0000]
 [0.1500, 0.0000, 0.1500, 0.0000]]

>>> print(mc.first_passage_probabilities(5, 3))
[[0.5000, 0.0000, 0.5000, 0.0000]
 [0.0000, 0.3500, 0.0000, 0.0500]
 [0.0000, 0.0700, 0.1300, 0.0450]
 [0.0000, 0.0315, 0.1065, 0.0300]
 [0.0000, 0.0098, 0.0761, 0.0186]]
 
>>> print(mc.hitting_probabilities([0, 1]))
[1.0, 1.0, 0.0, 0.5]
 
>>> print(mc.mean_absorption_times())
[4.56603774, 3.32075472, 3.28301887]

>>> print(mc.mean_number_visits())
[[0.50943396, 2.64150943, INF, 0.41509434]
 [0.18867925, 1.83018868, INF, 0.30188679]
 [0.00000000, 0.00000000, INF, 0.00000000]
 [0.75471698, 1.32075472, INF, 0.20754717]]
 
>>> print(mc.simulate(10, seed=32))
['D', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C']
>>> sequence = ["A"]
>>> for i in range(1, 11):
...     current_state = sequence[-1]
...     next_state = mc.next(current_state, seed=32)
...     print((' ' if i < 10 else '') + f'{i}) {current_state} -> {next_state}')
...     sequence.append(next_state)
 1) A -> B
 2) B -> C
 3) C -> C
 4) C -> C
 5) C -> C
 6) C -> C
 7) C -> C
 8) C -> C
 9) C -> C
10) C -> C

Below a few examples of MarkovChain plotting functions; in order to display the output of plots immediately, the interactive mode of Matplotlib must be turned on:

>>> plot_eigenvalues(mc, dpi=300)
>>> plot_graph(mc, dpi=300)
>>> plot_sequence(mc, 10, plot_type='histogram', dpi=300)
>>> plot_sequence(mc, 10, plot_type='heatmap', dpi=300)
>>> plot_sequence(mc, 10, plot_type='matrix', dpi=300)
>>> plot_redistributions(mc, 10, plot_type='heatmap', dpi=300)
>>> plot_redistributions(mc, 10, plot_type='projection', dpi=300)

Screenshots

Usage: HiddenMarkovModel Class

The HiddenMarkovModel class can be instantiated as follows:

>>> p = [[0.4, 0.6], [0.8, 0.2]]
>>> states = ['A', 'B']
>>> e = [[0.5, 0.0, 0.0, 0.5], [0.2, 0.2, 0.2, 0.4]]
>>> symbols = ['H1', 'H2', 'H3', 'H4']
>>> hmm = HiddenMarkovModel(p, e, states, symbols)
>>> print(hmm)
    
HIDDEN MARKOV MODEL
 STATES:  2
 SYMBOLS: 4
 ERGODIC: NO
 REGULAR: NO

Below a few examples of HiddenMarkovModel methods:

>>> sim_states, sim_symbols = hmm.simulate(12, seed=1488)
>>> print(sim_states)
['B', 'A', 'A', 'A', 'B', 'A', 'A']
>>> print(sim_symbols)
['H2', 'H4', 'H4', 'H4', 'H3', 'H4', 'H4']

>>> est_hmm = hmm.estimate(states, symbols, sim_states, sim_symbols)
>>> print(est_hmm.p)
[[0.75, 0.25]
 [1.00, 0.00]]
>>> print(est_hmm.e)
[[0.0, 0.0, 0.0, 1.0]
 [0.0, 0.5, 0.5, 0.0]]

>>> dec_lp, dec_posterior, dec_backward, dec_forward, _ = hmm.decode(sim_symbols)
>>> print(dec_lp)
-8.77549587
>>> print(dec_posterior)
[[0.00000000, 0.84422968, 0.41785105, 0.84422968, 0.00000000, 0.82089552, 0.52238806]
 [1.00000000, 0.15577032, 0.58214895, 0.15577032, 1.00000000, 0.17910448, 0.47761194]]
>>> print(dec_backward)
[[1.50000000, 0.88942581, 1.01307561, 0.79988630, 1.31154065, 0.94776119, 0.98507463, 1.00000000]
 [0.50000000, 1.00000000, 0.93462194, 1.21887436, 0.43718022, 1.00000000, 1.07462687, 1.00000000]]
>>> print(dec_forward)
[[0.50000000, 0.00000000, 0.83333333, 0.52238806, 0.64369311, 0.00000000, 0.83333333 0.52238806]
 [0.50000000, 1.00000000, 0.16666667, 0.47761194, 0.35630689, 1.00000000, 0.16666667 0.47761194]]

>>> pre_lp, pre_states = hmm.predict('viterbi', sim_symbols)
>>> print(pre_lp)
-13.24482936
>>> print(pre_states)
['B', 'A', 'B', 'A', 'B', 'A', 'B']

Below a few examples of HiddenMarkovModel plotting functions; in order to display the output of plots immediately, the interactive mode of Matplotlib must be turned on:

>>> plot_graph(hmm, dpi=300)
>>> plot_sequence(hmm, 10, plot_type='histogram', dpi=300)
>>> plot_sequence(hmm, 10, plot_type='heatmap', dpi=300)
>>> plot_sequence(hmm, 10, plot_type='matrix', dpi=300)
>>> plot_trellis(hmm, 10, dpi=300)

Screenshots

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDTMC-8.7.0.tar.gz (129.2 kB view hashes)

Uploaded Source

Built Distribution

PyDTMC-8.7.0-py3-none-any.whl (76.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page