Skip to main content

A General Purpose Machine Learning Library for Python

Project description

PyDojoML

A General Purpose Machine Learning Library for Python

A quick taste of PyDojoML

How to install

You can easily install it with pip.
Copy-paste this in your terminal and run it.

pip install pydojoml

Good job, now it's time we rock-and-roll!

Simple Linear Regression example:

import numpy as np
from dojo.linear import LinearRegression

# Let's create some data to fit the model to.
X = np.random.randn(100_000, 100)
y = X @ np.random.rand(100)

# Building the model.
linear_reg = LinearRegression()

# Fitting the model is as easy as a call of a method.
linear_reg.fit(X, y)

# Now lets predict.
prediction = linear_reg.predict(X[:20, :])

Dojo's ingredients

Linear Models

  • Linear Regression
  • LASSO
  • Ridge
  • Logistic Regression

Deep Neural Networks

  • Layers:
    • Dense
    • Activation

Activation functions

  • Linear
  • Sigmoid
  • Softmax
  • TanH
  • ReLU
  • Leaky ReLU

Losses

  • Squared Error
  • Cross Entropy

Optimizers

  • Stochastic/Batch/Mini-batch Gradient Descent
  • Momentum
  • RMSprop
  • Adam

Regularizer

  • L1
  • L2

Tree Models

  • Classification And Regression Trees (CARTs)
  • Extra-Trees

Support Vector Machines

  • C-SVM
  • Epsilon-SVM
  • Nu-SVMs

Bayes

  • Naive Bayes algorithm

Ensemble Learning

  • AdaBoost
  • Model Stacking

Clustering

  • Hierarchical Clustering
  • K-Means algorithm

Anomaly detection

  • Univariate and Multivariate Gaussian Distribution

Dimensionality Reduction Techniques

  • Principal Component Analysis
  • Linear Discriminant Analysis

Preprocessing

  • Encoders:
    • Label Encoder
    • OneHot Encoder
  • Scalers:
    • Normalizer

Various metrics

  • classification
  • regression
  • clustering

Model evaluation utils

  • Train-Test splits
  • K-Fold Cross Validation

Plotting

  • Decision Boundary plotter

Data Preprocessing utils

  • encoders
  • normalizers
  • scalers

Natural Language Processing utils

  • TF-IDF

Recommender Systems

  • Content Based
  • Collaborative Filtering

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDojoML-0.4.0.tar.gz (206.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

PyDojoML-0.4.0-py3-none-any.whl (230.4 kB view details)

Uploaded Python 3

File details

Details for the file PyDojoML-0.4.0.tar.gz.

File metadata

  • Download URL: PyDojoML-0.4.0.tar.gz
  • Upload date:
  • Size: 206.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for PyDojoML-0.4.0.tar.gz
Algorithm Hash digest
SHA256 a951cf920724bb128d6879a99ed1b2e60e129003af16812f14fd8ddf744e5017
MD5 579bad1f16eed3b2d5be3e9985b4acc3
BLAKE2b-256 00d9363207f8c3109d2a4f37da3d4f65cf65c3f11f0f2268e06cba70dfd243c5

See more details on using hashes here.

File details

Details for the file PyDojoML-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: PyDojoML-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 230.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for PyDojoML-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 361da8e234ae0282f8dff675eda719fbb792b070a6a19334081ed00813152e98
MD5 fff03f6fdf4b4deedc5e363c36a0344b
BLAKE2b-256 20bc13f87072af29f189f3b382eae673edc23883cfd2f5f819a0cc9434fd61d5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page