Skip to main content

Doofinder's search & management API client

Project description


Doofiner Python Client (work in progress)

This library is a python wrapper for `Doofinder Management API 1`
and the `Doofinder Search API 4 and 5`


pip install pydoof

**Management API**::

import pydoof
pydoof.API_KEY = 'eu1-s34v2sdfs4werdfsfwclsss'

for se in pydoof.SearchEngine.all():
accepted, task_id = se.process() # Parse and index the data feed of the Search Engine
se.process_info() # Get info of the current/most-recent 'process' task
se.task_info(task_id) # get info of any task
se.logs() # Get the last logs of the Search Engine

You can also make changes to a specific Search Engine: ::

# Select the SearchEngine with the hashid identificator
search_engine = pydoof.SearchEngine('abc32sfasdf3vadsfsafass343')

# Get a list of the data types of the SearchEngine

# Add a type of data to the SearchEngine

# Delete a type of data (and all its items) from the SearchEngine

# Get an item of the 'product' type
item = search_engine.get_item('product', item_id)

# Add an item to the 'product' type
added_item_id = search_engine.add_item('product', item)

# Add multiple items to the 'product' type

[added_id1, added_id2, added_id3] = search_engine.add_items('product', [item1, item2, item3])

# Delete an item from the 'product' type
search_engine.delete_item('product', item_id)

# Update or create an item to the 'product' type
# If item_id does not exist, the item is created
search_engine.update_item('product', item_id, item)

# Update or create multiple items
# all items need to have "id" property (item1['id'])
search_engine.update_items('product', [item1, item2, item3])

# Iterate over all items of the 'product' type
for item in search_engine.items('product'):
print item.description

# Obtain daily aggregated stats data for a SearchEngine during a period of time
from_date = datetime.datetime(2016,11,23)
to_date = datetime.datetime(2016,11,30)
for aggregate in search_engine.stats(from_date, to_date):
print # day
print aggregate.searches # num. of searches
print aggregate.clicks # num. of clicks on searched results
print aggregate.requests # total num. of requests to doofinder
print aggregate.api # num of api requests to doofinder
print aggregate.queries # num of search requests to doofinder
print aggregate.parser # num of parse requests(items parsed/100) to doofinder

# Obtain sorted terms frequency for a SearchEngine during a period of time
from_date = datetime.datetime(2016,11,23)
to_date = datetime.datetime(2016,11,30)

for clicked_item in search_engine.top_terms('clicked', from_date, to_date):
print clicked_item.count # number of clicks on the item
print clicked_item.term # title of the clicked item. i.e. "Aiwa AI012 portable mp3 player"

for search_term in search_engine.top_terms('searches', from_date, to_date):
print search_term.count # pnumber of searches with that term
print search_term.term # search term. i.e.: "mp3 player"

for opportunity in search_engine.top_terms('opportunities', from_date, to_date):
# 'opportunities' are search with no results
print opportunity.count # pnumber of searches with that term
print opportunity.term # search term. i.e.: "green custom oak"

**Search API** ::

import pydoof
pydoof.API_KEY = 'eu1-s34v2sdfs4werdfsfwclsss' # mandatory for v5

pydoof.SEARCH_VERSION = 5 # use v5 search. (default is 5)

search_engine = pydoof.SearchEngine('abc32sfasdf3vadsfsafass343')

options = search_engine.get_options() # obtaining options from server. (only v5)

query_response = search_engine.query('test query', 1) # The total number of results
query_response.max_score # The maximum score obtained
query_response.query_name # The query_name used by the search algorithm
query_response.facets # aggregated data information

for item in query_response.get_items():
print item.body

# Making queries with filters and a specific query_name
search_engine.query('test query', 1,
'brand': ['nike', 'asics'],
'price': {'gte': 2.45, 'lt': 100}
'match_and' # the query_name

# Any keyword argument is passed as req parameter
search_engine.query('test query', rpp=12, lang='pt', transfomer='dflayer')

# Use of the sort parameter
query_response = search_engine.query(
query_term='test query',
sort= [{'namet':'asc'}, {'update_timestamp': 'desc'}])

# You can use lists as keyword arguments, too.
# The will be translated to repeated req parameters
search_engine.query('test query', type=['product', 'article'])

API Documentation

* `Doofinder Search v5 documentation`_

* `Doofinder Management v1 documentation`_

.. _Doofinder Search v4 documentation:

.. _Doofinder Management v1 documentation:

To Run Tests

You need to have `nose` and `HTTPretty` installed.

To run tests:

$ nosetests

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for PyDoof, version 2.5.2
Filename, size File type Python version Upload date Hashes
Filename, size PyDoof-2.5.2.tar.gz (10.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page