Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, pyfjcore wraps all the methods/functions in fjcore and also does not require structured NumPy arrays. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows.

Current version of fjcore: 3.3.4

Documentation

The FastJet documentation, despite being for the C++ package, contains helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

A few modifcations have been made to fjcore to make it more amenable to wrapping in Python. SWIG automatically converts return values of std::vector<PseudoJet> to Python tuples, making a copy in the process. Another copy is be required to pass a Python iterable to methods that accept const std::vector<PseudoJet> &.

PseudoJetContainer

To avoid unnecessary copying, fjcore has been modified to return a PseudoJetContainer any time std::vector<PseudoJet> is normally returned. PseudoJetContainer holds a vectorPseudoJet, which is the Python wrapper around std::vector<PseudoJet>. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying.

PseudoJetContainer is convertible to a Python iterable like a list or tuple (by using the __iter__ method from vectorPseudoJet). It can be indexed, assigned to, and modified (by deleting elements) as if it were a vector of PseudoJets. The vector property can be used to access the underlying vectorPseudoJet directly.

A Python object can be attached to a PseudoJet using the .set_python_info() method. It can be accessed as .python_info().

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts an array of particles, as (pt, y, phi, [mass]), to PseudoJets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts an array of particles, as (E, px, py, pz), to PseudoJets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.array_to_pseudojets(particles, pjrep=PseudoJetRepresentation_ptyphim)

Converts an array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values PseudoJetRepresentation_ptyphim, PseudoJetRepresentation_ptyphi, PseudoJetRepresentation_epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument.

pyfjcore.pseudojets_to_epxpypz_array(pseudojets, mass=True)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (E, px, py, pz) values.

pyfjcore.pseudojets_to_array(pseudojets, pjrep=PseudoJetRepresentation_ptyphim)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument.

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a vector of PseudoJets (equivalently, PseudoJetContainer) and returns the as a NumPy array. There is also a user_indices method of PseudoJetContainer that has the same effect.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

fjcore README

// fjcore -- extracted from FastJet v3.3.4 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-0.1.1.tar.gz (187.1 kB view details)

Uploaded Source

Built Distributions

PyFJCore-0.1.1-cp39-cp39-win_amd64.whl (332.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-0.1.1-cp39-cp39-win32.whl (255.2 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-0.1.1-cp39-cp39-manylinux2010_x86_64.whl (405.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp39-cp39-manylinux2010_i686.whl (401.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (347.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-0.1.1-cp38-cp38-win_amd64.whl (331.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-0.1.1-cp38-cp38-win32.whl (255.8 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-0.1.1-cp38-cp38-manylinux2010_x86_64.whl (406.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp38-cp38-manylinux2010_i686.whl (401.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (347.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-0.1.1-cp37-cp37m-win_amd64.whl (330.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-0.1.1-cp37-cp37m-win32.whl (255.5 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl (404.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp37-cp37m-manylinux2010_i686.whl (400.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (346.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-0.1.1-cp36-cp36m-win_amd64.whl (330.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-0.1.1-cp36-cp36m-win32.whl (255.5 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl (404.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp36-cp36m-manylinux2010_i686.whl (400.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (346.9 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyFJCore-0.1.1-cp35-cp35m-win_amd64.whl (330.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyFJCore-0.1.1-cp35-cp35m-win32.whl (255.5 kB view details)

Uploaded CPython 3.5m Windows x86

PyFJCore-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl (404.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp35-cp35m-manylinux2010_i686.whl (400.6 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl (341.7 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl (406.3 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_i686.whl (403.2 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl (406.3 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.1.1-cp27-cp27m-manylinux2010_i686.whl (403.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

PyFJCore-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl (344.5 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-0.1.1.tar.gz.

File metadata

  • Download URL: PyFJCore-0.1.1.tar.gz
  • Upload date:
  • Size: 187.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1.tar.gz
Algorithm Hash digest
SHA256 505a414edf60566ab781bba72dd66b2d21b0860ac50913cf204cc2b621256c09
MD5 5e853dac2749be70ef266001821c87be
BLAKE2b-256 e8c71eb4bcb1db6d751f8298b6eda8c1306a81dd2a070c26ec6d702b4a8664e2

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 332.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5e9709d3cba9de3d1dcf943f2707c2f6970f6cfd9a050cc29f05f3fde4a61c2
MD5 d3dcbcbd12a045c1dbc03ea1ef0477ef
BLAKE2b-256 984d7c85fa18ec88b00f87df9e6a82f26c762625fbb67da71ac5c1bb64261aa8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 255.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cf42513291ef88e0230c1897d96b91a9b7f60c7be4c7c6b19665bfa7bfcb6401
MD5 6b0497db9e53e3bee5e35a94df5e6d73
BLAKE2b-256 5789927bf976f06190025c3bbfc68ccfa260d39c453ed608d4be6ccdeb6f7444

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a6d66270c5df75e1c6d48925954ebdd07c0e6b48a87574f5ba42bda5a2334b3
MD5 808f9d2328f9e3f80562a81eac0c729e
BLAKE2b-256 1907988cd8833d00ddb48df643f193dd448c0e85efa9f5ae58b4ab7126ef109d

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.6 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5d8a0a0ef0031b05f6cb096e8ea9dab7d6f8970dd62b0c014c84113999f35274
MD5 498087945f8407931e3e00102085e96a
BLAKE2b-256 cfe37b8a6b4bbce4ec08f41e2e9c4e788f640060a0c3137e95552b6739148373

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9d0f98bfe5499daa7d4b26f48dcbcf096faf23b55252afe314f5c2bf0eb24df
MD5 02a1683a3438c303ed66bc78d67bdd38
BLAKE2b-256 e068a555a9ef2f4392d73342ca6cbe2e048f5ec7d6523655724dd49c7b3e0cf5

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 331.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bcbd155f8bfd93c502e9050d86de130c27db45d2d60bcc968a85949b2edacd79
MD5 d62f14decd41492b00cba247950cded1
BLAKE2b-256 3036d051127b1fceec6814e3bb4db0196ca466aef9ead46a4f342085e2a81c74

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 255.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 27d2f4780250fa5ee2488e61ff252b752d67e14944bb648cb6271ea01f26f97e
MD5 569320a11377d7089a949dc8b6e32618
BLAKE2b-256 c99e69a4040ec39842fba4d9600ac876905223cdfefa8c0eda55956bfe5d06f1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dcb5831606f9070943fbc4c6b03364bf84008f8cf0b11cb2e5ebf3e46b890b59
MD5 5b956afea2a5ba904363189dea7829b6
BLAKE2b-256 4939dc663d18f5fe878fda1b39766d1935c65693dd5f0643ff033dde316c1609

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7c0cb64da9a052bbf14a3c39bb999e737824d7fdcad4297417ad0a1da4e81e5
MD5 9afa841c26c81097a245a104fa847d94
BLAKE2b-256 519f4a42d8e978611bc404b5ef7054e82866ded44e9897d015db2f0fbf23a181

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 687d6817ffec4b4debb5a788471cb461e55bc1a055b2e8131135d14b9d123317
MD5 4164f43e3df1123f0b131ed42b4a1f7e
BLAKE2b-256 7b2606b2afe060f26bff6a39d8b82bf10c21f248280d56c18df2c8d7a5782a06

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 330.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b84bfee859cb05ee6a06fc5dedae782b03ca51aaed4eef80a8c8a698697fd230
MD5 d0ee969446e56e159e43b91d834043ec
BLAKE2b-256 0d8239e7516b9bd3b9d1a085aa1f573503ff7bdb2b2da7e6efb63959edd16c2e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 255.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c2ab8c694b42c7d1c8b9f9bc14c0410953dec6ca608ca0f36c52f616bdf37077
MD5 3f9c78ee9f1eb03ee52d2f84be1e000a
BLAKE2b-256 5227fd499f8de3454f918569e1e7e9c4648710e15f3ef30c690b4fb8e20cff5e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 404.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f96eed8de7a3dc0de4025af2b3dd952624b00e938bff6da940cfe4c66dc899e
MD5 e3695f0ebf14fa0de897c2b036e1cef2
BLAKE2b-256 dc84ce80200846810134c93129f44a052778a6f84bb5d738800ae3797ff196df

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 400.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a8ddfd0fed0e62ee921918950401ded8779b89bebc1f214650a3b710b752c137
MD5 d47143d649be1226417a9ae3f4a78db1
BLAKE2b-256 f7b5b08312e99d697e0815fbf2a14f3da17fef518a3516640e1cd3a34c090861

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 346.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f939cf3fed21359c36cb3fd1c092b54b9e54961d8022ef0c2fecc0ffe39e41c
MD5 127c32228e1ea5824688b8c5eef906c4
BLAKE2b-256 5036858efaa1247bee19ceb5101b77534e99e51331d7a94b3df39b11c9f1d87b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 330.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7971fee4c731b39ba91f0ad37f8ae8335e2c0882546faf01c2ed4a30eca37f4d
MD5 5ed5fad1ff8b0e78634acd0990515d0d
BLAKE2b-256 b07dd9f378798f221f2e1d1e9a5410319313e4d4ae76bc2970aff6605b88fedf

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 255.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 89d4d4a95f12063a4e739f7f05f0f14ddc9952ee8a4336bc90a92a8836c89b7e
MD5 edf38a72a622721d16a69758899e2c13
BLAKE2b-256 f4ccd31d28613f90da854cf7f8c8871948cb19f7e7e8026eea7072331c8e113b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 404.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e1017e4877e9a47d6f11501365b817356f8d34fa6a00747a2a986c9dfb3c7fb0
MD5 f1ee1a862506f13d4edfef88f0118510
BLAKE2b-256 c22e44afe9fee6767b3f9582941372f28d45e0f4b29830b6fab48194fd67221e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 400.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 302c8596101f1d147866dadebd3168b34544a6ed8a4c74eda2d1eef076577e8b
MD5 54563fe71636b136b689c0ce96c43685
BLAKE2b-256 874545a432d3260b73acdadd6f81c797b6a2ae8ef040e543ffcf42dc94151422

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 346.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fe7b35c369645a75c98c772a300d23d5febe53edde9cefc0e6448fd544a93ef
MD5 f2fb7de82ba37561fb204d18a7b1becf
BLAKE2b-256 340b3494017515bb9c19c754b02092a7ee39b41fc5e089fcca0bb9031ab8bfb9

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 330.7 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f7f073d05eec69cc9322070f8719b26344e6299671231d6086ecc5ee5220cdcb
MD5 2fd7f14b6a892e2e4175ee43bf17b68a
BLAKE2b-256 eb28aba115e155bc32af8559ec6e3e04f4eeaaf9b583eaf3a6fdbd0099f3897a

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 255.5 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 2346157bbe22246a5b90df8d25236dc3a447740522b1371d97d5d42986532953
MD5 01b831e65d19af077f66f7cb7ab127b4
BLAKE2b-256 bd86fe9539a11620da8ebcbb52a9b70ed1e090151f0c101aadd301c9c0f56b57

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 404.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0044dd212356bdfe2ce9bd905eaf15b2929dd7a764196ba4d30106b97d2d4dd
MD5 88e1ba6fefa30108b043804fbd6e798c
BLAKE2b-256 a8cc6fd3304d4d1d294496bb79c56d31b9d3236604f20c2da6f688531a19f118

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 400.6 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b3e1f993c218d8a40db75716e42efb69e2585087968b374f73ddc37350aea42f
MD5 12b5fa909b158171d03ae4250364eb7b
BLAKE2b-256 e20a8847e0df6c329cb9ce3ef48cb03fa9d099bc168e1bde57f47a1296b0c587

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 341.7 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0011a3c6750e5ab0758bc1e4a3ad80345117b8ee8e926472070c10323f203236
MD5 2034690ea6f404299cf967ac6448c9ca
BLAKE2b-256 54c372b865341923caa75e1261525426fd43b436f583e6962507ec45c4b74386

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.3 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7bf76fde492861596974262adff1545ba91f540209cd17f318e1028d28134c5
MD5 823a35f29a31998213fe7e6d3ee63e6d
BLAKE2b-256 6abeb27388fb9df45ae55b34e5acd9d91c563e71a0d11ee03c45914f6556e73a

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.2 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cd12628225e983b2dc76f36c871596069fc9ae0a678a06c52db21cb45d578b9a
MD5 23b4896d20bb2a9081d3e46d7314817f
BLAKE2b-256 b915d00f47d45d4f90030c770220065d4b35c76bc8486820a5ccb2ef16830378

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.3 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50c0d7674b2d9958e26711a85203f673f4d065392709c7db4cd45194cb48e478
MD5 b7a816cd86f93fef33dad3870721cb5c
BLAKE2b-256 bea41a9b4fdac5dc847fab7050a19ca0d2fb2508fd4f27b4afc6a2be54211845

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.2 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.1.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9486eca612c37cd6de1a07426019b2b451039766ace0fed666a4b1ff6eb53222
MD5 0e383e7e1b387ee606bab75159396dcc
BLAKE2b-256 ca92735b8c18b89df1b097ab045cef8595e803e78891862a4f9c7f39ac36a9a5

See more details on using hashes here.

File details

Details for the file PyFJCore-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 344.5 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd4cc188c434bd8076aad2cb414bc13a139f2b16e1fcccce6e63a4890c6a4898
MD5 55a38797b852b38996140d0aad4bc840
BLAKE2b-256 099c9308d163e47f322853d29df1f61ba8f87851e623c1917a0336bbbb6bf27a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page