Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows.

Current version of fjcore: 3.3.4

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

Python User Info

A Python object can be attached to a PseudoJet using the .set_python_info() method. It can be accessed as .python_info().

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True)

Converts a vector of PseudoJets to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument.

pyfjcore.pseudojets_to_epxpypz_array(pseudojets)

Converts a vector of PseudoJets to a 2D NumPy array of (E, px, py, pz) values.

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim)

Converts a vector of PseudoJets to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument.

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a vector of PseudoJets and returns them as a NumPy array of integers.

Version History

0.4.x

0.4.0

  • Incompatibility with FastJet Python extension fixed by adding virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support.

0.3.x

0.3.0

  • Memory leak (and subsequent crash) detected in EnergyFlow testing of PyFJCore. Removing PseudoJetContainer for now.

0.2.x

0.2.1

  • Fixed typechecking so that PseudoJetContainer is accepted in overloaded functions such as Selector::operator().

0.2.0

  • Built against older NumPy properly; added pyproject.toml file.

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh
    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added back virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support. This is critical for ensuring compatibility with the FastJet Python extension.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.

fjcore README

// fjcore -- extracted from FastJet v3.3.4 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-0.4.0.tar.gz (188.3 kB view details)

Uploaded Source

Built Distributions

PyFJCore-0.4.0-cp39-cp39-win_amd64.whl (337.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-0.4.0-cp39-cp39-win32.whl (260.5 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-0.4.0-cp39-cp39-manylinux2010_x86_64.whl (412.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp39-cp39-manylinux2010_i686.whl (409.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl (354.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-0.4.0-cp38-cp38-win_amd64.whl (337.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-0.4.0-cp38-cp38-win32.whl (261.0 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-0.4.0-cp38-cp38-manylinux2010_x86_64.whl (412.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp38-cp38-manylinux2010_i686.whl (408.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp38-cp38-macosx_10_9_x86_64.whl (354.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-0.4.0-cp37-cp37m-win_amd64.whl (337.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-0.4.0-cp37-cp37m-win32.whl (260.8 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-0.4.0-cp37-cp37m-manylinux2010_x86_64.whl (411.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp37-cp37m-manylinux2010_i686.whl (408.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (354.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-0.4.0-cp36-cp36m-win_amd64.whl (337.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-0.4.0-cp36-cp36m-win32.whl (260.6 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-0.4.0-cp36-cp36m-manylinux2010_x86_64.whl (411.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp36-cp36m-manylinux2010_i686.whl (408.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl (354.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyFJCore-0.4.0-cp35-cp35m-win_amd64.whl (337.3 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyFJCore-0.4.0-cp35-cp35m-win32.whl (260.6 kB view details)

Uploaded CPython 3.5m Windows x86

PyFJCore-0.4.0-cp35-cp35m-manylinux2010_x86_64.whl (411.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp35-cp35m-manylinux2010_i686.whl (408.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp35-cp35m-macosx_10_9_x86_64.whl (347.2 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_x86_64.whl (413.3 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_i686.whl (409.9 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp27-cp27m-manylinux2010_x86_64.whl (413.3 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.4.0-cp27-cp27m-manylinux2010_i686.whl (409.9 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

PyFJCore-0.4.0-cp27-cp27m-macosx_10_9_x86_64.whl (349.8 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-0.4.0.tar.gz.

File metadata

  • Download URL: PyFJCore-0.4.0.tar.gz
  • Upload date:
  • Size: 188.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0.tar.gz
Algorithm Hash digest
SHA256 09cf9596c4781efffeab1336fc27f6613d505d96ce384dc141aa48a12fff3876
MD5 61e16654ceb20d3d1dead7cf16220bc5
BLAKE2b-256 e1494d8b186acd377e870f7f0dfce8807947903c87816f22f33cdda8958ba5d8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 337.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 818e5623dc98cfd7263bc6109ab1666c66eab70b3f050b4a7c80a61f316bbab2
MD5 9f12e49b0db911df4d3710c10e9c5a45
BLAKE2b-256 fb5852ce4d86bb1201725f9cf27705dcc8c808331c2e40281516a86229fffc02

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 260.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c2749b96bd83f46cdd53a61c65873cb24b1bb20657a0f0494c73543a7de689c0
MD5 e06deed938bd0c5f88d15e894eaa5c41
BLAKE2b-256 eb2931377fc4efde15ad1ebfe33a4c0b31b6aea0eda45c147a71ece87997614b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 412.6 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 73c061a7587acc29cdd203568d29339b83f5498d5e0030b63602ce2584fb2752
MD5 5b7e0e5bae03d5044c0cf85b9d9b0e9a
BLAKE2b-256 1524aa4759400e579d90be5d0335f5b4caf3d043550fe3628a05bd385941c780

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 409.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7f951f7eae1d55827ee8dcded35d44ffa77b1b9ca6d93786382be37d9694b3a7
MD5 dcc97f23c7fba7f4162f0e3bc072d69f
BLAKE2b-256 efff3d5ffcb3c704ba925b330bcb6b319ee616458feb62fe6155a567537d7091

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 354.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b5cb668c32560a61380942ef468c8e90229141a92b1f7ffe34ca8859c7f1557
MD5 3223322535c3219230aa0b65a1310873
BLAKE2b-256 11c077ed8582381c1ddb2ede3e5978048a209f3eaa71b14ba53cc5135b13e7c2

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 337.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b8c30a9a8dad97318b3d0b26f87a7a0d7d659668cd90fb13d9fcf00913d08000
MD5 757f1e6485b1f1ac100472f64f3197c2
BLAKE2b-256 7abcbb3fcb90e0d466d52cd1b88b6412922b1da54831aedb073182a3336b0c63

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 261.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 632ff785ff4f17fd29e4e75170ac31973de4e44dc349dc2d7c97b56ef0bdf8c5
MD5 15100d5502b0e972e993a90d2d2da691
BLAKE2b-256 1a40c1dc933e812b43ab4398ce5eac2e999a28e88a92353a95ed154b5323b892

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 412.7 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 662f3a20ca8fc745a95ce23761a24277e597dc8008cdb44c65b7ba74e0ea573a
MD5 874461fe8b10e1f2ae694bda0d5478c5
BLAKE2b-256 9f0602f6fb4c8d4649132f90e9ed025e260c0aaf499b4cf83ae2301141a7238a

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 408.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6b9ae1db5cec943330d76d2b11e876d52558bef59a02b541dea31c746b92f631
MD5 abc64352495415a034f42011e9ae4e20
BLAKE2b-256 c0bc1432c9da4fadd05eddffbdda4c691b30e40f83ce67689d323719ab1326c7

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 354.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4e910ce0f6386335ec064b0b63e4a77ad431bd6cc6e16f95cd1d12e7d39e881
MD5 5021aa830b688c9b3b690570648a9186
BLAKE2b-256 8ddaa6f2cc02d32917b52317834a3623835ff38baff78f28c02c2bb31cc3431b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 337.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 caa3060162107578498c35b17fa72ee2abfaa31b1bb6e33c4d8cd3fd5663fa74
MD5 e754a80c7f23f7fae8ef30cc053c7ca9
BLAKE2b-256 fe7e8f920efa1d80269f294b9850e9f0bd7887087149ed7ad2a83081769c7cd7

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 260.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 908a8a7487faeeae9671d529b53cefb859ef66b3e1662236f9eb6a09e68d8a77
MD5 6a378aec34388b5fbd89bad8e705e8d4
BLAKE2b-256 b34482bdfc54a0776dcb6e181ed97f53e0a3d53a80fdfe6081a95f42f361b4e1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 411.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6deb24c26e91d04653899fe9ca0e04841087d15b1dbfcaf48c624d1f3353c690
MD5 32c9e2a91626783286863c07f7b25e85
BLAKE2b-256 a7198d17bd0fb83ee6160dd9003f2070893e00d4a750a04f01a82b6667a6b116

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c20a5dc153c432ccca71405cbd46519e6569d681ef7ecc6f11ca8e0b2d44581d
MD5 e1c05551618fd340fd1b46298b7646af
BLAKE2b-256 f9a654300752b3d0eaf9230bea5edec61e233abedb9f217084730becb6e5563f

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 354.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f98d6207b6607f6575bdeef7781373b62eb9f95041af2c5b5b3e22067d5afd1
MD5 9fe3dbfc0c04bf9d62e9d172192a1366
BLAKE2b-256 97438a23f15e66852bd8f98b16cdce99186d33c5db708baa81f0b023f859c23b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 337.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 aa1828502527e66aa42f53615aa4c9805593314f5254c8bdb4f4722b44d9a5bf
MD5 aea8fb3ef3a23100ec4ebdb853f33367
BLAKE2b-256 b7fe1b83f74cbb51ecda9c18732af296e2fb6e42d91407490349f261c9aaec83

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 260.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 233f7b889f606be1b4ca8d717297e8a1394cbe2305918187ac3f90666116a278
MD5 d9d052b00b2035b5c2b76ea1a78c9db8
BLAKE2b-256 723c5277a357a71d263cef1ab9fe7a92b90ca764ce109b429c929f48d9e10074

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 411.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b658a44a232ab05bde7a5780808df66bb7953e26ccc8a69387764aa9aa81c14
MD5 a9a19d9af3fcbb3e7f275bc286f637bc
BLAKE2b-256 9ddd7e5f40f0bc6fdc4215e26be14da6f02a1d90f6bfb007b149096dad64c2e7

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ab2d687f53fbd2f894169e0952ca9ab4bbad44c35608946768f109f7e70bb05a
MD5 1fd3f103fc7c1884688b4df0951dcc43
BLAKE2b-256 3b2bcf709f64af00e138b130dc1d7bde16233110918e42e912eb8c472b3f004b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 354.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 203c6f16acac8d991aee8daa2ce1f0ab143d8a9c46e069d73e1b1158c90eca4f
MD5 a00ce9bdd5579e8b55e989b0fe162d7e
BLAKE2b-256 df7ab7f2ff842cb27577e6835f216ae80439bb14d9aa1e3b27fb3dfe92c733f8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 337.3 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4b6c2a7b3d5cd1727b6dfe8273dde81ad3b13a19b4da235735ffdced3b9dc2d3
MD5 31ddf2efce5a3f76ff925f6f95dede28
BLAKE2b-256 91389fc22ed9a5ecba212054272e11f08f72f8c8ff0a64c9f627a6f4d9d4dc36

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 260.6 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0c50c5008b0f34377d794783f7335398f79e1dbe78cb14a974d56fb907a53b00
MD5 7cb590b4925aa88a18f9c487f3adb746
BLAKE2b-256 13db302fcd25b462e9e3875f4833f117797132baa524db05aae365245c42f31d

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 411.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fb4ee83d5149fde0cfbfa36f511fae8dcba13eb8e46ea78ead11797b2a5063c6
MD5 4aada782dc781ed032e9417e74622bcd
BLAKE2b-256 fccf87391800f7526462bdf26eacce93abf1edae24e7ddc2864caf3e64a8cc89

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6a326c914741c132c1d00b5b750830e9dfb17cc9d6de3537995b6bb795cd878d
MD5 b3a95bc7fa9e2925aac1e53fe90a22ae
BLAKE2b-256 44888345d339e9465842c024c948d08739e4eabe145db6e06ea9bfb5eaebd777

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.2 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c53199fa951db1decda3e9e7cad1c53438e22766f72c0bdad55e1cfd2f3537bb
MD5 bb90427fdef79b1f082e8521fed00f38
BLAKE2b-256 9dc7e74b98af435eb4468b6373e1571f193aa2415a0a66069e6ceef2d57620e1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 413.3 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 051c88cf8dc47d2c0e601b4b4daa17a6d9f77deeb375567745e394a62c2f850a
MD5 f752557f25b7b70fb913e8abd2d617c6
BLAKE2b-256 61825ea55de8ee46324d27cfa776c57b205a1648400ba76fd2c75853cfc360b1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 409.9 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3183c49e9ed9ef4ce00f6fdfbc99039528f62b5637f41111092cb4307ae27d42
MD5 758e01159a5e65844909170ffd3cf600
BLAKE2b-256 7af8d0617c662edf1f9679d19dd508ebdccfa03d29d702e946fddfc7e3d98ec5

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 413.3 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 46955e53094f715e0680115ec83e4f7950d3a7c93b70711cc2fc5ec293ae4528
MD5 023a33e4423897218469dc06f8f14d04
BLAKE2b-256 5c4308df1c72e9f6e462082a709e7410dd0fe094256212cf54bb80e9778610ec

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 409.9 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.4.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bd02961345636967032f63ceb0427cf264de5813d17e43c6987c26f01663ba86
MD5 df95fd3cb335f9617dec6c12aad11f98
BLAKE2b-256 c2c2af354e3be97c56511304de32cb4500706bec8c1e7eba42100440e49d4b23

See more details on using hashes here.

File details

Details for the file PyFJCore-0.4.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.4.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 349.8 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.4.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d00685409f91c97ae81c4b5bea0966a1fc4df2739b852c1cac63e05f34055876
MD5 587e4fd1bf901811b18f3ecdddd01bf0
BLAKE2b-256 90cf3a64fc7dbfae6acf812559f36eb041f9b34d245e46dcb1f2a47bc639d591

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page