Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

build-wheels PyPI version python versions

PyFJCore is a Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows, and is available on PyPI.

Current version of fjcore: 3.4.0

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

PseudoJet

Particles are represented in FastJet by PseudoJet objects. PseudoJets can be constructed from Cartesian momenta using the constructor, pyfjcore.PseudoJet(px, py, pz, e). They can be constructed from hadronic momenta as pyfjcore.PtYPhiM(pt, y, phi, [mass]), where the mass is optional and is taken to be zero if not present.

PseudoJets have a user index which is set to -1 by default. It can be set using the set_user_index(index) method and accessed with the user_index() method. An arbitrary Python object can also be associated with a PseudoJet using the set_python_info(pyobj) method, and accessed as python_info().

PseudoJetContainer

A PseudoJetContainer is useful for efficiently working with a list/vector of PseudoJets. In C++, it is a struct holding a std::vector<PseudoJet>, which allows the user to control SWIG's automatic coercion to/from native Python containers. Such coercion can be useful, but can also be inefficient since it requires a lot of copying. This coercion is still possible if desired by explicit tuple/list construction, e.g. tuple(pjcontainer) or list(pjcontainer). A PseudoJetContainer can be indexed, assigned to, or modified (by deleting elements) as if it were a list of PseudoJets. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying. The vector property can be used to access the underlying vectorPseudoJet (SWIG's wrapper of std::vector<fastjet::PseudoJet>) directly.

PseudoJetContainers con be constructed directly from an iterable of PseudoJets, or more commonly from NumPy arrays of particle kinematics (see the functions ptyphim_array_to_pseudojets, epxpypz_array_to_pseudojets, array_to_pseudojets below). Given a PseudoJetContainer, a NumPy array of the particle kinematics can be obtained using the methods ptyphim_array, epxpypz_array, and array, which correspond to the functions pseudojets_to_ptyphim_array, pseudojets_to_epxpypz_array, and pseudojets_to_array below. The user indices of the PseudoJets can be obtained as an integer NumPy array using the user_indices() method.

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True, phi_std=False, phi_ref=None, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument. phi_std determines if the phi values will be in the range $[-\pi,\pi)$ or $[0,2\pi)$. phi_ref, if not None, the phi values will lie within $\pi$ of phi_ref. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_epxpypz_array(pseudojets, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (E, px, py, pz) values. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument (valid options are pyfjcore.ptyphim, pyfjcore.epxpypz, pyfjcore.ptyphi). The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a collection of PseudoJets (PseudoJetContainer or a Python iterable) and returns them as a NumPy array of integers.

Version History

1.0.x

1.0.0

  • Restored PseudoJetContainer by explicitly overloading methods where const std::vector<PseudoJet> & is accepted as an argument. Methods that previously returned std::vector<PseudoJet> now return PseudoJetContainer.
  • EventGeometry and Piranha packages are now built using pyfjcore to provide basic FastJet classes.
  • fjcore.cc is compiled into a shared library that is linked into the Python extension.

0.4.x

0.4.0

  • Incompatibility with FastJet Python extension fixed by adding virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support.

0.3.x

0.3.0

  • Memory leak (and subsequent crash) detected in EnergyFlow testing of PyFJCore. Removing PseudoJetContainer for now.

0.2.x

0.2.1

  • Fixed typechecking so that PseudoJetContainer is accepted in overloaded functions such as Selector::operator().

0.2.0

  • Built against older NumPy properly; added pyproject.toml file.

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh
    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added back virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support. This is critical for ensuring compatibility with the FastJet Python extension.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.
    • Added methods that accept PseudoJetContainer anywhere that const std::vector<PseudoJet> & is an argument.

fjcore README

// fjcore -- extracted from FastJet v3.4.0 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2021, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-1.0.0b2.tar.gz (223.0 kB view details)

Uploaded Source

Built Distributions

PyFJCore-1.0.0b2-cp39-cp39-win_amd64.whl (422.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-1.0.0b2-cp39-cp39-win32.whl (348.7 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (563.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-1.0.0b2-cp39-cp39-macosx_10_9_x86_64.whl (501.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-1.0.0b2-cp38-cp38-win_amd64.whl (422.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-1.0.0b2-cp38-cp38-win32.whl (348.6 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (555.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (563.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-1.0.0b2-cp38-cp38-macosx_10_9_x86_64.whl (501.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-1.0.0b2-cp37-cp37m-win_amd64.whl (421.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-1.0.0b2-cp37-cp37m-win32.whl (348.1 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (562.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-1.0.0b2-cp37-cp37m-macosx_10_9_x86_64.whl (501.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-1.0.0b2-cp36-cp36m-win_amd64.whl (421.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-1.0.0b2-cp36-cp36m-win32.whl (348.1 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (562.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-1.0.0b2-cp36-cp36m-macosx_10_9_x86_64.whl (501.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-1.0.0b2.tar.gz.

File metadata

  • Download URL: PyFJCore-1.0.0b2.tar.gz
  • Upload date:
  • Size: 223.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0b2.tar.gz
Algorithm Hash digest
SHA256 670978dab2cf1df8be4d8925e6ef0ca07d90441dbc8b59f9bd568761845023af
MD5 69a2ae6998c2d362a51e41a80d9b7230
BLAKE2b-256 5726de13fa8127d942b9c4432bb0a2ec562e22b7a119fac87a538cc75eefec2b

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 422.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e729cddafd717142eaa71bd5b06f4387502bb787ca05b8bf0f4d4b5c971a912e
MD5 3566c38f6767d5efb344faa1a219c822
BLAKE2b-256 60c5a5c668846c849c55e923510ca04f8446c1fed59aba8dda618f82a647300e

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 348.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6c96075ded3513be10dfbce85d38fd117b125a6dc948151186a35dc2de58ff52
MD5 3dcbaae100508bb1e0eb50e107681d82
BLAKE2b-256 be0e641ff558065357550246e517b42fedf478101cd1c766a1608b971d5973f6

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3be466679fcc4be931e2365774c75d8ab75e6f9ecd3b48e36fff5c4f53cc810e
MD5 eb1e6210adfa87dc90c1674c960a9299
BLAKE2b-256 d015ca3e51c6ffc049bb4ec788b6117532f94f2b7b19a3f9fa910d864db88cdb

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 90239efe8bb247603a03169402ca4c23fa38728a33ea2b72a7f1185b9e5efee4
MD5 f502d40b8448693f3f58f56ac44f499e
BLAKE2b-256 158c7be44066d5a02a56224415ba03f63214405a0deec6595d001eba5df4a032

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0b2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59ecd58b4901445891cf23999def31e12f5ddad3d67e39b13449df56812d24f7
MD5 367f13c2a91263978e053493242a5e6c
BLAKE2b-256 93f9cab83ea9e362c42a235a6c281b36fcbae10ea5eeaec9bed926fee746fae7

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 422.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0514bead513f1a951ee65a6b294a75d1b59133cb08d6c861f510b594344a5e4a
MD5 0879f5bb2ce1315df17d666b12ba02c1
BLAKE2b-256 d035ce5679d6db2392c7ad33c3ebca81ee8a844cc65ba435b9b5a00c124bccd1

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 348.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7dd7df97d59cc9e168bd9ca362b732ad5700f70c65fe4338c52505f7551c087d
MD5 75f61787adf8d0bf248a7e9d60fb2d9a
BLAKE2b-256 b3ff0301d466f40d48b50954189d4765fd8217ac994c4ec07b75a8df5e0009bb

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b49076e2365e7f54bc8c8622e1d9b0acbdb28d6db23549f4ee5c86f3eec4d26c
MD5 37871480487d115a6e06d875e81a01e3
BLAKE2b-256 33393e9d07ac0d433e19feddd97efbe37a1412468148d2a9b3fec3af2f21a835

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 46efa54f4c377f46be216c9a9b7036b38aed9de509509ae6e354c69ea7c2653e
MD5 f1ec02a0339ad7efbd5b9abdc3388a69
BLAKE2b-256 f92fdbf1fa6cb99478d299fa2631f5f886349fa45f152aa470329540486136df

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0b2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b62ea0c5cb8a492ae9af1338ded99bdc592add50c1696628bbeaa3fb4149af9
MD5 733a212345c54ba5ce85238035e41f80
BLAKE2b-256 769ba7ad90266295f94819803f37f199ba6e8e98cd4126c18703257f8d7d7eb3

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 421.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 511d3627be043b2dfa6a5ce88c4af8f8f380d317d205a52258d6fa350de336ec
MD5 14584e2f6ba433e457c145c1d2dda8c9
BLAKE2b-256 11fc4b5a7e47219fde53200e1d7601ca0107d68652d202326a67dc3d2a762f0a

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 348.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 62d25ec2abdc2e08094b7669cdcd44e46d16b3f58f6d2b968b4bd344ae5443b0
MD5 8b09a789b3361679a9354b1edf353368
BLAKE2b-256 e8fbdf1ae1e6481eb9739ced65a091bce9eb2cb7cd3160209ed745f4fa5da309

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f0377521952152e319891ed70d0e10f505a0705c9bb94aa7bb3af0f9d7237b55
MD5 e513802ae39fd8ada9021a65380178b9
BLAKE2b-256 233ec6596792b4999c04963299c1dac09e30aed243ea1b059b9fafd8fc80ee06

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 820194274763dd999bcf1b7f0e668a890ab475f27371c3f48cbd11bccb1ce119
MD5 cfc26a2dc68be0670cf00047d9cd054a
BLAKE2b-256 d11923ddebd77147dccd23fe3ed07eb60519a3b56eb6bd38dd57055f2572d9e9

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0b2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d76d683ea907a393215023658a789e45222b7b480f2d09a44633cb848aef0231
MD5 7b67293d4077f463e9e597c85e5e63c0
BLAKE2b-256 3246eb724e79a91c366dd23fada1df50ec9bc3ef4356fb1965e54e8bc7104174

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 421.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc9b68cfb4d79e10d8fb6a73e6c1f495f98932e2252f295d74369f051cc47572
MD5 da0fbee3efd0be7efd567993037db594
BLAKE2b-256 9c89dbeaf7cc1956d21072894718ea48b902ac98ab4288d4d4b2a8cf228cb9ab

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 348.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0b2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3bcf87f79bc5ccec6da39d04135254fe3e801aaa8adb8148640d126dfc8c4a0f
MD5 15159b33220bf5f00f532741d9878136
BLAKE2b-256 9e24b61fd4c5e09115b2781659846bd908511e3f3cefb6099f9d4aa8ffac10a8

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22cb8941b9b73e8f02a80462435b0bd7325e2fb5e41839bdbbfcc18a8bd2f806
MD5 ddbe0af62ac813189407368aba660d4f
BLAKE2b-256 f7244ddb7089d05d423c384b11a521d0ca72410e2696b1a877e7a904d9ca1625

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0b2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f06a2d837061147c1e3f870278c523729d1aee8a1dc5a603b49ad2ecebd1738b
MD5 6a5704effdc151017c38ed1b9101e8a4
BLAKE2b-256 d1a5e0981573fce75a62ad3e47dd879314244e470be7dfd75aba7bc581ff0dba

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0b2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0b2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0b2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dbe214c9c8e9656a760ab8063d428db911997f007720f2f8949043a1bce925b
MD5 f03106dc449acd5e4dc0dd9b5171e10a
BLAKE2b-256 e171b30f18e45d354cbc3d7def8c2c9a24350eb412e87f8bc9491768ff282590

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page