Skip to main content

Client for Faceplate powered by Ecomet database

Project description


pip install PyFaceplateClient==0.0.1 pip install websockets=>8.1

from pyfaceplateclient import Client

1 Создать объект с необходимыми параметрами

host="host_ip_address" port="port" login="login" password="password"

a=ecomet.EcometClient(host, port, login, password)

2 Получить все доступные имена архивов

archives = a.get_names()


3 Выбрать имена архивов с необходимыми данными, датой и количество точек.

id_count=1 # идентификатор запроса (на перспективу) archives=['archive', 'AI_0->archive'] # список имен архивов (тип данных: list) start_date="2020-01-13T08:46:16Z" # дата-время начала чтения массива данных step_count=10 # кол-во точек считываемых из архива step_size=1 # шаг, измеряется в секундах

data = a.get_data(id_count, archives, start_date, step_count, step_size)


from pyfaceplate import Client as cli

def main():

    #1 Create connector


    a=ecomet.EcometClient(host, port, login="login", password="password")

    #2 Get archive names

    archives = a.get_names()

    #3 Get all data

    data = a.get_data(id_count=1, archives=archives, start_date="2020-01-13T08:46:16Z", step_count=100, step_size=10)

retrun data

Project details

Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for PyFaceplateClient, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size PyFaceplateClient-0.0.2-py3-none-any.whl (6.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size PyFaceplateClient-0.0.2.tar.gz (3.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page