Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as most unstable extensions).
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

For a complete reference of the types and functions, please take a look at the wiki.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, usually being a lot faster than numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems with either x86 (32-bit) or x64 (64-bit) architecture,
running Python 3.5 or higher. (Prior versions of Python - such as Python 2 - were supported up to PyGLM version 0.4.8b1)

It can be installed from the PyPI using pip:

pip install PyGLM
# please make sure to install "PyGLM" and not "glm", which is a different module

And finally imported and used:

import glm

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
There is no need to import anything but glm, as it already contains the entire package.

For more information, take a look at the wiki.

License requirements

Please make sure to include the license for GLM in your project when you use PyGLM!
(this is especially relevant for binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

Note: This feature might not or only partially be available in PyGLM versions prior to 2.0.0

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

FAQ

How to pass the matrices generated by PyGLM to OpenGL functions?

You will find an overview on the [Passing data to external libs] page.

Types and functions are not available after installing from the PyPI using pip install glm

Most likely you've installed glm, a JSON parser and not PyGLM (or a very early version of PyGLM).  
The correct install command is:

pip install PyGLM

Why is <experimental extension name here> not supported?

I prefer not to add too many experimental extensions to PyGLM, especially as they might change or be removed in the future and it is simply too much effort for me to keep up with all that.  
If you need a specific experimental extension, feel free to submit a feature request on the issue tracker.  
I try adding them on a one-by-one basis.

Why are Python versions prior to 3.5 no longer supported?

Starting with version 0.5.0b1 I decided to use C++ to build PyGLM, using glm under the hood - which requires C++ 11 or upwards.  
Only Python versions 3.5+ support C++ 11, thus I was forced to stop supporting older versions.  
The last version to support Python 2 and <3.5 is 0.4.8b1.

Short example

>>> import glm
>>> v = glm.vec3()
>>> v.x = 7
>>> print(v.xxy)
vec3(            7,            7,            0 )

>>> m = glm.mat4()
>>> print(m)
[            1 |            0 |            0 |            0 ]
[            0 |            1 |            0 |            0 ]
[            0 |            0 |            1 |            0 ]
[            0 |            0 |            0 |            1 ]

>>> v = glm.vec4(1, 2, 3, 4)
>>> print(v + (8, 7, 6, 5))
vec4(            9,            9,            9,            9 )

PyGLM in action

Wanna see what PyGLM can do?
Take a look at the examples from the popular LearnOpenGL tutorials by Joey De Vries running in Python using PyGLM.
LearnOpenGL

Speed comparison to numpy

The following is the output generated by test/PyGLM vs Numpy.py

Evaluating performance of PyGLM compared to NumPy.

Running on platform 'win32'.

Python version:
3.10.0 (tags/v3.10.0:b494f59, Oct  4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)]

Comparing the following module versions:
PyGLM (DEFAULT) version 2.5.2
 vs
NumPy version 1.21.3
________________________________________________________________________________

The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.


+----------------------------------------+------------+------------+-----------+
| Description                            | PyGLM time | NumPy time |     ratio |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation            |            |            |           |
| (100,000 times)                        |        8ms |       21ms |     2.69x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation with       |            |            |           |
| custom components                      |            |            |           |
| (50,000 times)                         |        8ms |       34ms |     4.32x |
+----------------------------------------+------------+------------+-----------+
| dot product                            |            |            |           |
| (50,000 times)                         |        4ms |       49ms |    10.93x |
+----------------------------------------+------------+------------+-----------+
| cross product                          |            |            |           |
| (25,000 times)                         |        2ms |      548ms |   234.34x |
+----------------------------------------+------------+------------+-----------+
| L2-Norm of 3 component vector          |            |            |           |
| (100,000 times)                        |        7ms |      310ms |    44.49x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix creation                    |            |            |           |
| (50,000 times)                         |        5ms |       11ms |     2.32x |
+----------------------------------------+------------+------------+-----------+
| 4x4 identity matrix creation           |            |            |           |
| (100,000 times)                        |        7ms |      176ms |    24.05x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix transposition               |            |            |           |
| (50,000 times)                         |        5ms |       32ms |     6.19x |
+----------------------------------------+------------+------------+-----------+
| 4x4 multiplicative inverse             |            |            |           |
| (50,000 times)                         |        4ms |     1925ms |   470.77x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector addition            |            |            |           |
| (100,000 times)                        |        5ms |       38ms |     7.17x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix multiplication              |            |            |           |
| (100,000 times)                        |        7ms |       39ms |     5.36x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix x vector multiplication     |            |            |           |
| (100,000 times)                        |        6ms |      116ms |    20.01x |
+----------------------------------------+------------+------------+-----------+
| TOTAL                                  |      0.07s |      3.30s |    47.78x |
+----------------------------------------+------------+------------+-----------+

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyGLM-2.6.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

PyGLM-2.6.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyGLM-2.6.0-cp311-cp311-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

PyGLM-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

PyGLM-2.6.0-cp311-cp311-musllinux_1_1_s390x.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

PyGLM-2.6.0-cp311-cp311-musllinux_1_1_i686.whl (10.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

PyGLM-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

PyGLM-2.6.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.6.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.6.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.6.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyGLM-2.6.0-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyGLM-2.6.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyGLM-2.6.0-cp310-cp310-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

PyGLM-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyGLM-2.6.0-cp310-cp310-musllinux_1_1_s390x.whl (11.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

PyGLM-2.6.0-cp310-cp310-musllinux_1_1_i686.whl (10.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyGLM-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

PyGLM-2.6.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.6.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.6.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.6.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyGLM-2.6.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyGLM-2.6.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyGLM-2.6.0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

PyGLM-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyGLM-2.6.0-cp39-cp39-musllinux_1_1_s390x.whl (11.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

PyGLM-2.6.0-cp39-cp39-musllinux_1_1_i686.whl (10.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyGLM-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

PyGLM-2.6.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.6.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (9.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.6.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.6.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyGLM-2.6.0-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyGLM-2.6.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyGLM-2.6.0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

PyGLM-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

PyGLM-2.6.0-cp38-cp38-musllinux_1_1_s390x.whl (11.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

PyGLM-2.6.0-cp38-cp38-musllinux_1_1_i686.whl (10.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

PyGLM-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl (10.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

PyGLM-2.6.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.6.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.6.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.6.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyGLM-2.6.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyGLM-2.6.0-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyGLM-2.6.0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_s390x.whl (11.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_i686.whl (9.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (9.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (8.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyGLM-2.6.0.tar.gz.

File metadata

  • Download URL: PyGLM-2.6.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0.tar.gz
Algorithm Hash digest
SHA256 f853abad66ec78602a9e9693d81a6ba6579a0cbe71715bf89f6bc62cbc837170
MD5 117943bf3f67f103aa989352533ac696
BLAKE2b-256 cc8d5c4f2e02147f451d4354fe9226d2686dcf660ede1322a6fb829f474b0a7c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eaf8920da63a56cd1031c03ff1b5ed48b405d60e39a548bbc8ce9fd61e1cb247
MD5 1e9b087abccd1ad98f352e6067f8a3e8
BLAKE2b-256 b1179bc07cdf3b6203f3bf3011e6310b0fa94627b1734a337a572c451fe84752

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 da62b2b521e678743839f8fb1e9bb4da96fb1a0d02d3bd120647e5801019859a
MD5 278fa77340afd80080e6d33480ae2ee6
BLAKE2b-256 ce71bfde33c3553a99f99c386c52e0edd23fdff5314b3b69d93632eb56a15def

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5dd360af9533fb11489be462bbfb78cad230d04d687ec7715c4d813120b254ee
MD5 7dd7fb00b63c77618613d1335a6f8649
BLAKE2b-256 68eb4108f9c794caf1165e87620ffb6745008a97a1fd4c4d4f1094c885d502b8

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ea9b35c7e201d0db0c7fc5747d6893818b5c3847732ba8bbcafa9fb66ef9fd7f
MD5 0a42b475548e7a15513ce7b96c806238
BLAKE2b-256 fe675533e1dd07a2e7d6c13647dc586f8d0f1d3eaf46931174314e9661d74002

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 485903afffc21bb054dba7bd654b188ac3b7e71615b217eee15e49881c7faba0
MD5 a2548cfe6ece0173905c53dbe5f4b596
BLAKE2b-256 7185c0299afc6958f9f2305533bd0ae4d2779554c08bddfa620615c4c3b2c084

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 45be94d11e268154e6565faf35a4dadabde829e4659d11d0a821ae8985c65a26
MD5 b380cf76ee534d81501a457858e57ab4
BLAKE2b-256 a684e9f5eccf86aaa1a0e02b6ff6870059ad10311b8680c59ff6dded8043da46

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 814dd3037c721c9f8625d61eba5101d716168b35d623f0dea5b67ea5d75bb1c0
MD5 d3eed77aaac1d3d35a441aff10d67fc0
BLAKE2b-256 d05825ba39a099713aff81affc2bc58b06ce5c791915ecf46a8328e2a6af6d13

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 7caab6475821da7d313ce8e701c21fbda032a71545ca1bc7160483d9f36f66e8
MD5 b0edc31d1c35d867eea76eb926b3b2a2
BLAKE2b-256 e460212413a09bed4329bbebb7cbaea818ea4206e11dc596e232fe7661c1163b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 337d9b71533a9c2e208d6228ecb48d56645cb68ccaa5a3928e334efe0986f543
MD5 234cb3452739a67db77cb711846a6041
BLAKE2b-256 e091e8a653ee6349804606e73fbf67c4fe9c926aa3ed905dbb83428e869e5421

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 952eaab5390df45489876a53e9cc07f4cfaa2eaa88d58f60771add9556db8151
MD5 aa71cdbb120071b69a3fe172aa158cab
BLAKE2b-256 cc16dcf26e43c93c842381451d08b4f68b5afa274470870d851b2b5a12fc05e0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 37325046b0783b33b7c7ab74d94b04cf2dce8d94ea02ca85d74e14f8c180ad1f
MD5 396f4a1bc04293a8633939537962545d
BLAKE2b-256 3fee6425d638885d4410087cad5f1b80e60bc05d6ecf9659b4173890f7662fda

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 8792f159037811e8b326a21c8f8cbe718c00c3c7a039d2c195e4b00dacaeaf74
MD5 d1f51521713f567e48319cd7dee3a273
BLAKE2b-256 411e226a7171a3a2211dc1f7c5cb0d791e2ff91804a3818dde0da212957fb4f8

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 276a02b06f3beafef7925f496fdbce2f3f02ed60a07867cf4d0d4cf27ce9fb2d
MD5 080408b4678a13a8a94952f03c5d7b82
BLAKE2b-256 d0c4f6b68a8b4863a245eefb313f048614fb2f23a16bd4e57978987753c7f81f

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f89e40f4530131bf6b8beda3ad915e41abe47562c971e2fccde2338473f0a6c
MD5 794df8dd64ee09cd965104b54155193e
BLAKE2b-256 5c20390d5ceb786855c9ad3b8b2e0780b3946be4a90045a033be88192408cfc6

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b758887aac263064cfdfc6f5f5fef429a623f16bb76e26aa01fec010a1858002
MD5 db5f1737851a81f368b1865726f60463
BLAKE2b-256 c7eed833bb7b586b0da779b55737fa7806edcfa50d98d6e4d81ba6f587d84c93

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a2c60e2f9b87ddd90b718626d8de7b435955729cc1eaa3515d5bcd0332ee743a
MD5 f2b6ffaeec240497ef0a40168bc3c6fe
BLAKE2b-256 d92ec2d61ccd813b342c42c08e77175d03f22346c90c8b2ea9dff76b5d2f8545

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 94fe130d4d34a9f14ab72a65075991771e73ae6b3e1d43976635db043908c0c3
MD5 4067d4e0c4f12b916bf8d470ed0db094
BLAKE2b-256 607e1fb099b4704d9a4e2095b8b4ec3b2f5d45e1285ad28a47af68f5cb84feb9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 078f63f5a8463c1bdc2c9fa02575a145167943211625c2a80ff701db38e5aa23
MD5 7f9bb95d5b4e4f880356e895943d6ed8
BLAKE2b-256 79074dd538f62b0762e7e956029a091869a29bda9ba7e6b78f2040ac89666d4c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7c793504d3d3a200204f50ccda88ffe7ad80f6a6bc880f4cf9b953e3cfc54b1c
MD5 c24ee4d0bb68238c1002ec58c0775873
BLAKE2b-256 072856dd29642f00eea7369a16cde79319c93a6ed837c3dc18d04f73cb5f2f8e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 51fdd641e4a978800533de51eef0f35a65913d55ac5d44cd2f37ebe625e1eec5
MD5 ea55da463543967119a82a79c61aa65b
BLAKE2b-256 9217fe76bfe47159a49ce4d6abe43804aa3982537a42980e27d4cac9822d63a5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bf26a1e274db088335558936d1b93c5d06b0239da2dedb582a67f45cce1cbc53
MD5 0eb50124b67b47b56b7a3c8cafffac8b
BLAKE2b-256 5f692dd768c63e6b59a0880dae7c414c53df6230f16b9ea2935c3aef689f1f03

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 de57f141da1a8e6fb9a28816263c912a176872f63278fbbc4c7412d4322c8907
MD5 4bfb5d34e0c7790dde34c5a4562370c2
BLAKE2b-256 17d37c4816be0926127960b4326ef5d5aea4e2d6f08f580deb1ea1247e6eec7b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 cf6d834102de23d9c583ce01b64a9018ad31bfeec0dca9cf9edcb740b635b540
MD5 45c05da5b2640e02b2592876e8b75c2b
BLAKE2b-256 6cabc67f8fd32cb2e4ee70b47459d0dd6416727ab04f6cd2189f017d90a51bd5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7b5528d2d91cd468a8773aaab6fd7b1805ec8a03b9717bdb66c879031e306713
MD5 4c0b42c0cd6bf9d46df04b5d0ca81202
BLAKE2b-256 e5e2f389d75bc6b95b501e7182c605337968372496f6e5d9a357a65e8bfe4203

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 5a2ec839ba94ac28b4d7ffe214338cddadff0860fb5dd5943500865d651546e1
MD5 e870b8046c5b2cb5b6a044602d3c9f01
BLAKE2b-256 701d01fd178937be18095eb750aa3df82404c0f09780bc075653a1bf1fdda8ca

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ae8fe6a3900a84e8277b3ff711a0e6771e94bc629a3661c90d8415200827124f
MD5 7f5256029f2a114cc21281a943ccc834
BLAKE2b-256 ae8041446a966cf4c3e52bac5f9a48c6d92604392edf70bada4c5e12a7c391be

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 7bd7fa98b469c8ec7e8901ea1ac52df401c90543e79e2bb6fbe9907a194c876b
MD5 dbac8e9ebe4813656a8c2ee902b857d0
BLAKE2b-256 4ab879ef1f4183088a2688681cdc591476a114b7f3223c5e55f5030047d0a3d8

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 fb0a2d54bdbca536f49952e7a5b1c86cd45039c3e8fe3f5e2c5d90ee4f7524eb
MD5 da39f10b8c45fbd9436934365fb5fa1f
BLAKE2b-256 aa956ebe2fa79bec5d326f0d5887bfd8e8ae9dee99bbd6b9ca08545b0adc0734

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2a3f6cfd3ebd05fe129a931b0e5eabaf77bee057265a94159c2097357e2c31c
MD5 ee8e2b3c3cd3b1dd09297fbbcf13db41
BLAKE2b-256 f903ee2e21998a21b6e96bfc21461acf0e80c978f0f218164296cb5e90da5ce0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5c060c2da916fe5d9472d86b735b211f1949ed874b27cd984a3ef786d56023b
MD5 3038227afdbf54942b6d8771ac69edf7
BLAKE2b-256 84ad4c8a5e952ba082c02e7d3b04251c7a1ed86843c1e5d415bbae4d51084078

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2124f7d08ca6a72386c345008d1edcf6ba60bef632b593de6d38f92f9260baa7
MD5 5a482412f1d95027287b482f005945ac
BLAKE2b-256 2437c3c08dd53c6821425c1566e7b919328fef6aee78d399720aecfe96959e1c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b531330c0b8c0c31a14b850803e64ae7b8b321c132d1175566fa1043784dd823
MD5 a885140311043ccd88613e505b237e4c
BLAKE2b-256 47062d2ac1019c6cb0ad2dbc9afec0ac57718061899608adbf97434dea7efb55

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 54d41ab0f0f8894af5134ba4a10157fab5db3c18680049f050c611b7bf9108a2
MD5 3cc9e6d0bff3a1fd8da66731ac97cef9
BLAKE2b-256 9b86a73b2bf6b4b3cca95b86189aa365564ce2a30cf12de0c8ad88818738cad4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8133c72b1fd277985d49d8327d08bd24a19614226c713e829c59bc92c1d921c5
MD5 935e7663df16ba4f63cb205fa2ba892b
BLAKE2b-256 547152acc478a8251c0944a226c0c50f0b9723e270464be4aae8b2bce42b2f6e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e4b7aa46bc5b95368db91a21e66256a9fa3c0abee0a061d8942a6d182c2f5069
MD5 5378ebf6da51d28137fcc7a602ad5f5a
BLAKE2b-256 91722ee9cf9693f009eb9d8fce208435355320f6171355b3c9c4f53a9a8de84f

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ccc288d32f5d802a30533a2e4daac49a5b5e5750c8f8ed4ba0bf02a481bc3706
MD5 d810669850b70f8f9cdab9a91b5b75ac
BLAKE2b-256 b1edd1942bdd823efc8f1383e5cbc956c65a60fa4c88b1036266ca27a8225767

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2c40238d1bdcaf597041700233994b3a5803b4c51307a810d36d3147a65b96ca
MD5 1b7e456eba18e31c4b7606bc1213828b
BLAKE2b-256 0686c3e0a1a2814a814287051abaf13cd45db989219643efe657bff2a0b9afbe

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 fa943a7ed80400df0c7dc718c22d08e24d7b1db0d8901cca8cad04d1c73aea43
MD5 d056127cf16023bb205ca28f3f88bd3d
BLAKE2b-256 7e1f69774364e48bbf3df63b8a8b68f1d03f2bc73dda189628801c1689bf0f1c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d0412fb1a9208738c6bfb5ee62a01bc383961848be43b7d6890374b8be809e31
MD5 d93dfc954d8d8e04527b28ea331c49c0
BLAKE2b-256 3cc4f3b90e7fe1c3fa45d5df0e4c53172146972df6c87c85b87ba91576ba08ce

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 34d56ec933a56f590b4dafefda918f6f4589bca408e21aaace5cee57bccfa2b3
MD5 e1aed141d10cd5efa6cee36927e32258
BLAKE2b-256 174b24954bf00b764a62fd5ce5020893c348463f210abae85a99e17efe4bb565

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 61bd27197ef26ce203c6201f82ab291f07ce7d7c68d7e45d4bc8c941ef4bb18a
MD5 6eb06dcb4b96287bf1c01bf37a8f249b
BLAKE2b-256 1cfdb49827724ad1fe0dce15328e109af008e0be8c1ef1e4c091e2f876ad2152

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 e8542ac2fb3891c95c9db04339be679c32e6e45ee4f980f007529df087bb8b5a
MD5 172195e22be392ad7f23d33f6116a39e
BLAKE2b-256 3a97b7799dca7bf25728cc8485717cdc29dc131a285b33c1c60ad58782a35caa

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 b40b18c25f2cbd41b5932a4f0ba26b3807f51c73f74df63972dd7429250ace62
MD5 ac3d7801375e9d00d7dfee36c7db7275
BLAKE2b-256 5f486adf9af9b600ca68fd525e808ed712c574e28fd709daccfb43dca5afb371

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79741a4c0c1aa16cf47392127cdbd4b9257525bff697bbccedbebd20aa7ac1d5
MD5 e68698db03834ac81c69c0dcca23295d
BLAKE2b-256 c9c6b371d3e061a325d57ea8a8c9993e0bf113ccd075a771caf302329c19eae5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4535fa0d63501cc5c386341ee9d68fdce471f5c64dc6e12c18dd09ccab71bc7
MD5 7dd2a310884e257ae1005fc5b02d8f95
BLAKE2b-256 b9b643b5cfb475316f409f453ee2aa04376989a3fb44ff73b9df6baa01e590a2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2f4e12f913cfeec3b9756e3362f80cd7ffe5ee5fcefd3a16e708f93fd5750b11
MD5 7ac0537ab41bb2a83489997a52557e74
BLAKE2b-256 81c00607b61437c9a13002c1e13caebdb09e5e11f1e03d749a2ffa35ff00f339

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3337850036aeba5c60246279b70bcd24e446c80b4add07fef02f6db300fd8550
MD5 f0030d5fd13c55b5a4d591ab343bc634
BLAKE2b-256 b25af60113313a0f57347080df74ec82f7f5697aac34c0c7ffc71a19fd5eea5d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd64210e3c453139889bea684a6de96f71158a991559fb875a12a057aa7a7722
MD5 b8e58e1ed4af8d1855e28135fb13521e
BLAKE2b-256 00801856b951488f0c554b80c3788d99f6da0e379a5dd73d1b0aafdca2c7fb43

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 eebe50984b0f3c5b99d6a46f8a7f9d644b9394189d36e021d402430a2d0a76d7
MD5 9af08ea140475c7f0a7b707a5d6bd175
BLAKE2b-256 56411a2a923814b2a4017375ab5d39d6c0028a2a960adf36975aaeb63d80403d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1038699746be014bfddf4bae6a7b69a9c3d732927fd68eee11e5e7ef8aebf4fb
MD5 2bc54d2226a2c60644f04c53e2be1ee0
BLAKE2b-256 b221595f809db930c0c67965bae9796d6268e8159be1378e982dcb49ccb8a0fe

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 da9437576668ed4e6b762403c7cf45741398bce9ad0182d396fa6940a823470e
MD5 86581ad865ecf81daab3e92f6b52f8a1
BLAKE2b-256 4aac4a7b157ab195646957e6e4ef922cec08c9eafd07a686d33d1569e223bb5c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 72376d196ac965e3e79ef6dd987a7991635a9ba928a529f6c3c4e0eec36fe99a
MD5 7eb1796568e0f1b5fef1656e75bd2fe6
BLAKE2b-256 f4a4b2afdc9a96ea453c5fcd739af9f95f9e8c6be06385876e1d02bf106bb3fc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 a50bb9969eec3777bc7a295968ccd26838504f508b6fe53f683d551ce0610de8
MD5 4471899afa0090690a28d0a2f00e3293
BLAKE2b-256 c22aee0a7a8d375c171bf9e57de1d93e6937fda3ca4a9643ecc0d395eb09de9b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b08c3fe9300851a927236abb984b4c3efc7d7e1b43ee256b5a71aab373e255e9
MD5 03c9f77fa169be2bff2d2323406258eb
BLAKE2b-256 f3fbb331d9654d7fce49ce9ad4c603e1a8e7e24465cb6b8bc3a3a89bce4e1c25

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 44300f0a813174585b06475efa67101c6e0124edb747cedb586e6e28e802406d
MD5 f619076d3ff1ffef26a3e2d20a7a6fae
BLAKE2b-256 cf78e3962fb32c935607f12ed6b013658a2ae03f26b2d781bffe2aa065d7f697

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b7463f31004b979c7e1c2cc2dc4df96e7132bfeb5bb0d3eaa3dce4168975c97c
MD5 f8c206fd481e474b3b81a933848192a5
BLAKE2b-256 0231fa2a785f1a0e65af67e2bff85dc59ebd4f3e3d2b2fe868a39c8e077522e3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 83ed3304408e85d411331eeb5f75e409bf61f23b2a933d3eb7f5e19530ff59dc
MD5 78fe5b7ab183eddb4f2701f305707a2e
BLAKE2b-256 86a947a19732e4e37c7b39362f9eb9c71cccf23f0d8ebafc233714514864f92c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 dc011bb6db561039f33dac5e24e721a851c93b9a3d1178772f1f56e03551f029
MD5 e07c48aa25df89a0bd324dadaded8dbb
BLAKE2b-256 62a23c995307f0ceee4f8a1eaa571be5630512bdfa67357491a868e4d586dd80

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d03f108a7e9c7bd339f13ca7736c8ad6129970b2a8701068fe7bc84e1bb64fcc
MD5 cf15be30ee30f6291a8787fbc61d29e0
BLAKE2b-256 29481999f93b713bff12ce990e1aca76fe9480c45bbcc7a3690280e1fb885b08

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcf0f8cab0969dfabb864703918f3f7857a0e007f29fe5bafb45ae3697a6c340
MD5 bff28b59238e443ee9a8fed2e008ee03
BLAKE2b-256 7b0485f1ae3f815b82cb6943b9295c8b01465195e20e82f39a81d41d6818506f

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09d4cbb66ed04542939dfa7d17638ad22b58c39e03b0f05b8fd253817c4b1c87
MD5 b5517458465846d33b571423fd5bea4f
BLAKE2b-256 d5a24c72124b4adcf8e0bb994bc46a28a383e5b304b3c1917acce6ab79c88b3e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyGLM-2.6.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 97dcc91bc8d786fcfebeb921cd197d7fb73200ac8d278465001718a6a97db7aa
MD5 2a554d9eba3a35680f5e446d629e146e
BLAKE2b-256 4c2d2a202f1b1d653d78da0a58c8da555801947e36f0a60b1ddddf45c7e40fc9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a7c3335289e109d4a808a279b3be568939c9e587f108bdfdc4c99d67a43bc1f1
MD5 f86370ae89bbb9552d07cc4f3c88c4c0
BLAKE2b-256 1e84285d12f37f929871dea294c92024bf4c6092872ce1a2860f9af0935b27d1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4ca95ea39bb1b36dce9271eb8881992c31f27c6879c6e2d0e85781d8642d86bb
MD5 e92250a92339b58a5f4caee1708ce3de
BLAKE2b-256 6e54040a42783e5e722a41201db5b3825e847f3516ecfea494fa2eb91cbac1d7

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6eb33aa4eb3180100a5bbab43142e07401e6f65c58d3c632846aac2c82648356
MD5 0240a2ba062e3c88c82c814830073ae9
BLAKE2b-256 f382d2f11e21bf49cd26e93dd84ff14067b57343bc5e2036d8015bf368615629

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 34152a8d18b9a21d534db2e4a223df05961b7e7521d430da449b9db0ddebdab9
MD5 3e0b264e0b65e819977ac58914e337ee
BLAKE2b-256 e41990bf5087be982075099bfe855e9e3717f1066b843972c4d16116bf6a71f0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 46673d018410ed8c8249214333bd7d3c794b5d2435fee7d2a363bb7055190b3f
MD5 8572314350e5f945f0e8661385a68a72
BLAKE2b-256 684935e3f4f4a50cf6716bf56a3ee43ee76b18da9b15940bb9e180aad81bd96b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 90e987324fafdfae3bc951c42441b6bd07788513ee10b17a8873863ac3837e9e
MD5 9bb80e2d680af6682a428c155c95873f
BLAKE2b-256 d13d5c2ee8f7d6767bb5f3e88423fa380eff124b78b29cfb775b1d7605b8a3ce

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a2bb1da338f7b471773da2c132645e757450b7c2daa001c98d6f0f7dd60b98fb
MD5 04a59fdc22b08f1aa148788770b596e5
BLAKE2b-256 124284287dda8bd7b5a1c63d6858ea1e93d1fa840c83ddbe265ef70c6039e68c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 938f669b06b50cf1515ca8d6e9b73bfc3cc83da7d4f3b32cff02367a76558c1b
MD5 040a1784e0e5c77a39cfad62295aae75
BLAKE2b-256 0bf1b204e8d82025a975f011df1498cefde6e874a486d2083a7ed0f03f453140

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 0c737df6e011a4e81b6897c589b2338d3949e2da57c1ac9be66988ae5898a293
MD5 1e4080bed05d5d30c61464ee23270af5
BLAKE2b-256 14fb61a5de0a9bf461754d9afbbd4a79b6ee28a31b81626c9a1af3da73b686b4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 b7e64223f51ef49657d37a140af58313b055b5e62d908086809de9809759b577
MD5 444f0c4f8ccbb372aaea58c218dd0a9c
BLAKE2b-256 2157e8a4d6427bfed91b0fc8f14c85148a3db22b9308bf562683f48e4b589f18

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 d138b16d896afef7fd369df1678e45f5d369b30b1229597757d7b8d3b239a812
MD5 97fb008f871ac377eca495ba9dba1d27
BLAKE2b-256 093643b0f252488194481edf36ff3524757e0ecb8a92f18aa71a6fdba5b06ef2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27d48acca65d0502b668f5c5ac3bb19f423d38009bf12e8aacd3af42ce846600
MD5 d1008d349a68f121d6dbcb12961432e6
BLAKE2b-256 b189615954c03ff8962ce5b62cb1e173b4f904aa12ad64e3e458503d882b9c06

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page