Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as most unstable extensions).
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

For a complete reference of the types and functions, please take a look at the wiki.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, usually being a lot faster than numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems with either x86 (32-bit) or x64 (64-bit) architecture,
running Python 3.5 or higher. (Prior versions of Python - such as Python 2 - were supported up to PyGLM version 0.4.8b1)

It can be installed from the PyPI using pip:

pip install PyGLM
# please make sure to install "PyGLM" and not "glm", which is a different module

And finally imported and used:

import glm

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
There is no need to import anything but glm, as it already contains the entire package.

For more information, take a look at the wiki.

License requirements

Please make sure to include the license for GLM in your project when you use PyGLM!
(this is especially relevant for binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

Note: This feature might not or only partially be available in PyGLM versions prior to 2.0.0

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

FAQ

How to pass the matrices generated by PyGLM to OpenGL functions?

You will find an overview on the [Passing data to external libs] page.

Types and functions are not available after installing from the PyPI using pip install glm

Most likely you've installed glm, a JSON parser and not PyGLM (or a very early version of PyGLM).  
The correct install command is:

pip install PyGLM

Why is <experimental extension name here> not supported?

I prefer not to add too many experimental extensions to PyGLM, especially as they might change or be removed in the future and it is simply too much effort for me to keep up with all that.  
If you need a specific experimental extension, feel free to submit a feature request on the issue tracker.  
I try adding them on a one-by-one basis.

Why are Python versions prior to 3.5 no longer supported?

Starting with version 0.5.0b1 I decided to use C++ to build PyGLM, using glm under the hood - which requires C++ 11 or upwards.  
Only Python versions 3.5+ support C++ 11, thus I was forced to stop supporting older versions.  
The last version to support Python 2 and <3.5 is 0.4.8b1.

Short example

>>> import glm
>>> v = glm.vec3()
>>> v.x = 7
>>> print(v.xxy)
vec3(            7,            7,            0 )

>>> m = glm.mat4()
>>> print(m)
[            1 |            0 |            0 |            0 ]
[            0 |            1 |            0 |            0 ]
[            0 |            0 |            1 |            0 ]
[            0 |            0 |            0 |            1 ]

>>> v = glm.vec4(1, 2, 3, 4)
>>> print(v + (8, 7, 6, 5))
vec4(            9,            9,            9,            9 )

PyGLM in action

Wanna see what PyGLM can do?
Take a look at the examples from the popular LearnOpenGL tutorials by Joey De Vries running in Python using PyGLM.
LearnOpenGL

Speed comparison to numpy

The following is the output generated by test/PyGLM vs Numpy.py

Evaluating performance of PyGLM compared to NumPy.

Running on platform 'win32'.

Python version:
3.10.0 (tags/v3.10.0:b494f59, Oct  4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)]

Comparing the following module versions:
PyGLM (DEFAULT) version 2.5.2
 vs
NumPy version 1.21.3
________________________________________________________________________________

The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.


+----------------------------------------+------------+------------+-----------+
| Description                            | PyGLM time | NumPy time |     ratio |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation            |            |            |           |
| (100,000 times)                        |        8ms |       21ms |     2.69x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation with       |            |            |           |
| custom components                      |            |            |           |
| (50,000 times)                         |        8ms |       34ms |     4.32x |
+----------------------------------------+------------+------------+-----------+
| dot product                            |            |            |           |
| (50,000 times)                         |        4ms |       49ms |    10.93x |
+----------------------------------------+------------+------------+-----------+
| cross product                          |            |            |           |
| (25,000 times)                         |        2ms |      548ms |   234.34x |
+----------------------------------------+------------+------------+-----------+
| L2-Norm of 3 component vector          |            |            |           |
| (100,000 times)                        |        7ms |      310ms |    44.49x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix creation                    |            |            |           |
| (50,000 times)                         |        5ms |       11ms |     2.32x |
+----------------------------------------+------------+------------+-----------+
| 4x4 identity matrix creation           |            |            |           |
| (100,000 times)                        |        7ms |      176ms |    24.05x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix transposition               |            |            |           |
| (50,000 times)                         |        5ms |       32ms |     6.19x |
+----------------------------------------+------------+------------+-----------+
| 4x4 multiplicative inverse             |            |            |           |
| (50,000 times)                         |        4ms |     1925ms |   470.77x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector addition            |            |            |           |
| (100,000 times)                        |        5ms |       38ms |     7.17x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix multiplication              |            |            |           |
| (100,000 times)                        |        7ms |       39ms |     5.36x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix x vector multiplication     |            |            |           |
| (100,000 times)                        |        6ms |      116ms |    20.01x |
+----------------------------------------+------------+------------+-----------+
| TOTAL                                  |      0.07s |      3.30s |    47.78x |
+----------------------------------------+------------+------------+-----------+

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyGLM-2.7.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

PyGLM-2.7.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyGLM-2.7.0-cp311-cp311-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

PyGLM-2.7.0-cp311-cp311-musllinux_1_1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

PyGLM-2.7.0-cp311-cp311-musllinux_1_1_s390x.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

PyGLM-2.7.0-cp311-cp311-musllinux_1_1_i686.whl (10.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

PyGLM-2.7.0-cp311-cp311-musllinux_1_1_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

PyGLM-2.7.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (10.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.7.0-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyGLM-2.7.0-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyGLM-2.7.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyGLM-2.7.0-cp310-cp310-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

PyGLM-2.7.0-cp310-cp310-musllinux_1_1_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyGLM-2.7.0-cp310-cp310-musllinux_1_1_s390x.whl (11.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

PyGLM-2.7.0-cp310-cp310-musllinux_1_1_i686.whl (10.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyGLM-2.7.0-cp310-cp310-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

PyGLM-2.7.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.7.0-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyGLM-2.7.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyGLM-2.7.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyGLM-2.7.0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

PyGLM-2.7.0-cp39-cp39-musllinux_1_1_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyGLM-2.7.0-cp39-cp39-musllinux_1_1_s390x.whl (11.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

PyGLM-2.7.0-cp39-cp39-musllinux_1_1_i686.whl (10.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyGLM-2.7.0-cp39-cp39-musllinux_1_1_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

PyGLM-2.7.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.7.0-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyGLM-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyGLM-2.7.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyGLM-2.7.0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

PyGLM-2.7.0-cp38-cp38-musllinux_1_1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

PyGLM-2.7.0-cp38-cp38-musllinux_1_1_s390x.whl (11.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

PyGLM-2.7.0-cp38-cp38-musllinux_1_1_i686.whl (10.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

PyGLM-2.7.0-cp38-cp38-musllinux_1_1_aarch64.whl (10.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

PyGLM-2.7.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (9.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.7.0-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyGLM-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyGLM-2.7.0-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyGLM-2.7.0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_s390x.whl (11.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_i686.whl (10.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl (7.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x manylinux: glibc 2.24+ s390x

PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl (6.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.24+ i686

PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

PyGLM-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyGLM-2.7.0.tar.gz.

File metadata

  • Download URL: PyGLM-2.7.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0.tar.gz
Algorithm Hash digest
SHA256 06964435d08d8d1fbf6f5a72d7d5f5dcf2b3151fab2e7785cbee7b907ff35023
MD5 88f6a66f82ddf37e04890db0d3e75131
BLAKE2b-256 4e4cca1a71217c4ac5b0f9ef56681ebe9eae14b5bb0d3ac8bb58f392bad445a5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dd69d6402b58f6161dde3b2cd7d48f1fad5a6f41624e1612a6db7b7c45094dbe
MD5 9ee2d4e95847a7928a8a68fbc93e515d
BLAKE2b-256 01754122a5138df4cb041e48c0109982cac1d226989285a5140155dc7c00fb69

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dfc520b2e5b825786f1f0b887603611acb25c5e5939107a3c80d7c8957beebb7
MD5 3834a9fed4b08f5441cf45bfe5584f66
BLAKE2b-256 4dc332eed8c4b8ee8592bc4c07e874b30c66b3bb97ea7aedf1d03ba54c8fbbd3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2b958482e488577a322ef72eee9aede26345187a007751877f6e9519b096b370
MD5 54e54eb8dcd9360809c8fccee0b99a5c
BLAKE2b-256 45fda0004102e357847f82d0743550844f5ca4de7034af1caeb573289b72d5fe

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b90a57f6af35e7aade3de40b3522ba722a46e05aa71dcef5bf7df5deb40988d3
MD5 754c5e6d51e7126c90a9f32ff6aa03c1
BLAKE2b-256 858ae608dd6c059a67f0e049ce8772e4402691339d6c160add7da2cfa1feca98

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8dcec29a57f752caa9cd3f962e05b573e84aa37ef7d3ac2c14d74de22fc3d02
MD5 e8c6c438545bf6939cb058edac22c28b
BLAKE2b-256 491e494bc3e964f266336bd5f9092be918dd83eb6972649a00566d544853d008

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 eae8febd7185cea72d2eba92d68dc9203e8ba4e95c3e623a8b63683d3883033b
MD5 2bcf17f02e8533950b5818f1a13a1771
BLAKE2b-256 9de600b65a99021065c6b39ac97c9f71c061737be8c28a5969e8c62a12d93350

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f2d03f2ba02d96dc11ed4f2ebf369f89cc67cede588c1dd5941a2368c468ceda
MD5 7b124fda51e037ebfb228a56aa52cfad
BLAKE2b-256 45f6f01083d7d64792bbcf55d3284e5c210991f6faffa19d2755ad95352557a3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 69504cd5404ae6dc7686d2f3bdc8e3e92222419571c5879a2f3c8f38241cc72e
MD5 0659db75aed176295587c322c2552881
BLAKE2b-256 991b53472fedcae77c6197c8500bcaa0af605c2632d640ef0cd7bf8816d66311

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4f06713cf9cff7e90093f4b69d9d8c00e639110eb246addb24fc496852e27899
MD5 2825ef273aa3f784c16953831b1827fa
BLAKE2b-256 69e9ce5ed97b6839d9a4f3f2a72b63647dfd9c605c9f72c8770ac0b955b6250a

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e3fa1149e61eb1f82084f4c65f4bb2699abb17dab178846b459b692b3466bde2
MD5 030f006ac44a68260a85bb3da74efb0a
BLAKE2b-256 cf864bef5a4dda4068638cae7e3e419e2fa8b36ad86242506df16793d0ac3cea

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ff76724a4cce77485b6f60c28bc0bd48520de6fc58ad5d538667bfaff00abda6
MD5 0e5e6fa49886c11d8f0999b59c1b1a5b
BLAKE2b-256 57765c1cf4e4672b09180cacf327ec092bbb3f74421c51c5344469fe61fc56d1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 e55f22d9ea9d2cfb883816d5490a26373840ae8b41e4d1205ad04ba526744a28
MD5 950340005247e96c6409f6df00563a1d
BLAKE2b-256 0276ab625ba89ca26745fbbece088111dd8ac8495452b31673b01222ee537cf1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 06fada4e6d940658b2af1f7e74bdbe2e2d02b5ff07bc4a9391454620b5d2b607
MD5 e9767d95c3f6060a959a98ac20780fca
BLAKE2b-256 724b3578175634a178e406e38bb1d8e1bb6663707b59bc018084b6b983603491

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f1d2cd01a5885edeb4ae61d2c18796ec065b5dd0e0e3a0e389c7576523ef0ee
MD5 b3abe2023e3a49c06de896f6cfde2784
BLAKE2b-256 87670058fe4d7ddfb7086bf679dd0d15ca703d6819a4b9fdfbe1319b4afd4fcf

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1b5e252d83e24bdd4e93fd5d904f347ed26dd4345727323eee532b90e60be9c
MD5 5d00c9bf78142cf40e416a02d310f838
BLAKE2b-256 2bd69efc7d51918e87b2b14e946cf60c3b16241cd1c844d6d9686ce5d983eb8b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eca747effd7b0fbe5b0c138a59b1534a182ee45f3f5f52e4b26dd35dafc32978
MD5 5ecc1b50a29874d5cf4f4cb1552951d1
BLAKE2b-256 381b0df2389830c8488c471afb117446005106b473449ac56bace21f7f778a71

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5ddf12079548c1e316ddd74012449e36896e0452af773b1d69f3ceee3f814165
MD5 d6eca3eaaf28a91c5d9fd3f0bf704ce4
BLAKE2b-256 3f41cd355153b1c1222e84aa42f0f2a6f81fb0a2d7956360c689ae7c26c18c90

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 961c65e28bc53915789954b3d1ff4f8fa123a48b02192553bbe43f00efa5d4ec
MD5 b3163b0b06d4904ea9f7f444d78c49a6
BLAKE2b-256 e8aeeb7ca6f283bcd7cd4c31d192bdd3a1f0cc81aca9d90b22b75c20408b8a14

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6997b75938a1972ce2b901c88f622dc4128556a3451bf8f8db18f5fb145c36c7
MD5 c8d98b8068f87970ab1e9408c905dc00
BLAKE2b-256 de65df9401ac06a9268e71180d048e2eafa5be3b32058e6de7f041a2a233283b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7243f327ff5ac3a6c38c951d902401039552b899de44392d1af9ed03b140c71a
MD5 8a30064f86e0694817e8d591f05be3ba
BLAKE2b-256 6c3c701f0994426abc16b3ff3e25fc2acfb1cd7d769a40aa869e2a282e5fdeaa

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 de6b5e155852519c184f09da3bf948302ff1fb51c09ed2148a3f5ff04356ec56
MD5 4a9a6be83d8770a127534b0613b69c67
BLAKE2b-256 ce671e05d1d8fa26cc765ef01a7aa850267800b4c7806a5ce05e4c37f1d32391

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c99e589f995eb11a04c034e5bc21e7a12d03b247fde85807ea3ee68390f469fb
MD5 4b7dbe3ee3531edba9925bb7649a4a2b
BLAKE2b-256 ef490610d977a088324254a32c5633cfec5b029fe1f72c64e3de22ef92382c8b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 a3fcb8acfc1222749b0429fb1355d6f843b06d741eb98d258f3b5e45151beead
MD5 bc6497ea87ad46cbed6130e1763df2fd
BLAKE2b-256 51d2c054549a71c99d3b86b19c496054e1ee521341d0661e91f0f19d557c30cd

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 99c12284d0d8c60c7c02a9b324e2d83a87cb253d65fa034051ab57ddd2addb20
MD5 8bd2d0bd8f723b4add5ca5f0d04e21e6
BLAKE2b-256 5b28b013f078494528d4c421719cdbe931f1aaef33b7db1c6a1addaf207a2913

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 bef41f431ec786fe19f208ba099b3a6f000d276e24b289992aa9b358c158e48a
MD5 d3814a5f059166c5a6806ac94b955f46
BLAKE2b-256 65564d3a9503bc9d8691862b3916e01236a0456f975d8c1acbde00fb188d060b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 797f104d509590bc53a01b14d162ac4e7afc68fd35a6ebb06b35d22352ffb1e0
MD5 8a4e89a5e7b1bad3da127a25ac6d4e3a
BLAKE2b-256 ca0d2b499b293f695a4ca4abce6e5208e5b8f664ed1b50ca356da7422b86ca85

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 03962ed12e93fa33701994f732e588046377b72d07e6add391cbca3d9ea91d92
MD5 2cf71932f61f3f7465e146154e49be14
BLAKE2b-256 cee9783a9d2c851d78d4cabef6e497e76ec20e71a10291549521269bb897e30d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 28ad2e6c5792f4f75cab610d80f7519700803c0c6ab37bbef0137aea4ca453b9
MD5 ae06415aa44f559522d80db6c8a20e5e
BLAKE2b-256 2470f3ab275e12ab165c128960219e3c3a90689c9188e6112a35452fae11d172

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6956f272e678f02c5203124efbbef8d1a4d867e91ea62b7fbb92ef79ed0dc7d
MD5 e3426b9723ed4b69fbd5521ae732b3c4
BLAKE2b-256 760926011bb0d06dae9d1fe94d5b91c05de13a1d6d74120d12f7683bb198fa2e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d60d222a1aca468806e0b83e4fa0ce1a38d3f42f9db07599e2013f76fa9fb5d8
MD5 13dbc96488ce22e8a844823395ee1143
BLAKE2b-256 9ab54fb622637044be900ce4e271410adf28301e442cb7099565cd59234c31b1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0656875993d907991da90f9fabab0c7b37c6c88ce78739593966112911213984
MD5 5dd950d4a447cf2725cc90a6000f9681
BLAKE2b-256 060c63f6d99d2f67735328ce794c8738e2516194d52c4ef5335af10beda7c8b9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 98e6046747e3f5b37216a11758838ae8daaebf4215d065505b8c83489aa15a2d
MD5 cbb557122fa809f8dc7077d6cefe357c
BLAKE2b-256 88b6b1179b5ca97b57ddf993cc7ce097ed424f45190383537a99059565fc0957

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5ccab776785c7deb6c08cfcc3b5aa8b5290327e696ee801f97e8766ed066628e
MD5 027033608b894dc8f264cec4ea88203b
BLAKE2b-256 8ef5836e3fa9d479522f4d01853325edcfd074440c1734f0a3a6f2794acc6fbc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a20d33bdff2eb405c0121e0e724425ce7f7c116ce6759d787211a9b532c12ab0
MD5 6a600d73601654f403afecb96b2cb660
BLAKE2b-256 18731e702e865885604986e30286efa56323a4f205537a3b01b697cf270901ef

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5a5625646013071500958c044bfdf260f5262aef4ccbfccc3d4bdff2e925df9d
MD5 f519f50017b84b29f13458c4bcafb3a7
BLAKE2b-256 43a444decd576eecdb6e45ed06bca4453770a92304cf06256f7107f7c81e63c0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2876a49d2b0bf5fc1be91bc4c69558771662e4e1cf431a2522c9d7bc702e1054
MD5 80496a3d22bedba36b232023c0c58bab
BLAKE2b-256 d7b3fb069b17f7dab697332f65205b49526c9aafa5bcfceef90599a892691bca

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8e1876d8a4bb0d7519aa9987052a9105fd431559b25ee29de5bdfcb8b79ab5cb
MD5 018874b67fcb8af255a9927b48f8ee6e
BLAKE2b-256 2c7465e02bd1c8c588801f845701df90b0386624be64f8b8adf4958a0f2622e8

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 016df1931ef213d68857f5ecfb9cc763d23d11005a938c0e3f7714c1797cf285
MD5 040b42cde327003d9d3c0f6e8403611f
BLAKE2b-256 ac814b2e7b624c52e3f2c9f3a3b37727bfcdcc3b13a66b53a86cc6d2018a76f9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0ae497f27d0ab9416256d6b3316db2cfcecf6545946df1c2caffabddd2c70693
MD5 38f83af523b57757a7ead4121c5b1192
BLAKE2b-256 7402918fb2417be3e0b3900aadc29264c557e4f9cb6dbe3a70b556aa68e91df0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 44b4509153c41f3b9e5110174a29612202187aab96dcd64ffd56f5f4c1cc5d72
MD5 3f4e912835acbfa514999862052c7787
BLAKE2b-256 a6d198329f2abd7ddd690400661ea6de0ac57551f8c2fce613b55d12a983af4b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 099ad7957914494d2605dc50a4328240fa29c0bd1935ae088ea5b5e5745b6449
MD5 11e56f9bdc982d47e04d6ec42c7bb80e
BLAKE2b-256 bef458a9b266232ab4424f3350348ad4f803bcf5953174f040dea1c1c86d1aa7

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 dd7efa7480983f7c6ab826fe5d3f20cdb41fac3dfc368e1bf31f05d09e580689
MD5 ead5328fe11c06242472f359b87a8edc
BLAKE2b-256 2f28cda6cf714f51b4571f30b4fdfc960a2bfbe0ab3fc226c80d500b8a29d735

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 3c2f896e0f5bd39977d7c9a4ddc5ab821d221876f4249c8a445d99c351ddbfe4
MD5 d1fb9101339e1ba45591c2124fe258a5
BLAKE2b-256 b0f1eb18c09c1e1c31d6c9390aff95ed628f902802ce2fc66ace2ca7853e15fe

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 86540240f3e766aa1ab6ba079ab5c598a3ad4f0a458574785ffd6f7f5d034bdb
MD5 9c7744ceb378dc1c3a192d56b14420e5
BLAKE2b-256 b23403d405a68bcd08752eb30823cf1fbc0c2cdb1f5184beb314ce949d4887bd

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c655b09fc3e5524c6833dda55112ba9fe27b368a8f625e764627746484974d0
MD5 73804d500107cf20ba2b2228872cbc17
BLAKE2b-256 8711bb99b058a9146b4d10de5de4b069cd69e2552dde336c6b65e96adfc78433

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7abf450385d3d0c08a9bc685b8080fff0b992d338dc5277e8f3ef9aac0359732
MD5 5a5fa4cffae7d282e57380d0cb45f9d9
BLAKE2b-256 b37551fd46c95cafed6488e6a6dc6b984ee8f3c12491fb79906c4e9cd6d012ee

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 649adfbe71e72a336e56c1b728bee6185b1205a0850f8911f199db6d0c598bd9
MD5 b93e39aaf6d71d7100c80eed80a06f5d
BLAKE2b-256 e92b5a7458c7219007fdf9d80360f4104e4616ae18a57048b79c08e76127ddcb

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 12032e1656531b04c374c7e278a3facb89de704d6621b31e15fac2156daa3391
MD5 dedeaf696014eba9ea29bb389faecd8b
BLAKE2b-256 db2c5818445bee4eb8338fb5fbb3795fad6e34da28e0467d3d0b9ddb84e09abc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c298821a747f04a2e5e34bd73dbf5c5804347f489879b81b3a411834eabcd461
MD5 8fdcefab882fb302cb1747c2607c54b8
BLAKE2b-256 bb3ce002e2e0742fe53d5f3e0f987ebc1356c90400f551674421d9ee173dc14b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e473ef48b6aab12e193d15f0e42b17c9e8e355a65e86d9b05c2491d3780d5e4c
MD5 85a3143982cfccb0f5694bedadc9e5ad
BLAKE2b-256 17cfd44b565e1527219eb251239dfda8e0de7c011d6eacd97fdd86a47c54ff72

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d74c333150af8ddac1eab5bd328cbb949246069ad31f541ed70a9fab1c6e8ce1
MD5 83fddebe2616f69a0afe10f38aa77e40
BLAKE2b-256 a3f64749a6304b1cf4010fa4e491fe86f87392d88961dc6d322c3fc819076bd0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6dccd4a6a247d9fb2b40564cc1be1fcb70edcec50aa0d3245b7e2d7d55ed5352
MD5 6301929749e613e0f6e8ecfe222dc749
BLAKE2b-256 dbff10b47e36614af8f878588aecf8eccf5a834fd6becb03c6069a956a070891

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 70ed4b1a66b4de49a856a59e9960452be0f97e01a37063c5d21dd9639c25a6d8
MD5 58136ce30c820fd33c7111aa368d4f3c
BLAKE2b-256 9249571907f3800b5d585aead0dcfcb94b884d1cd0151aa551f0511d126b82a5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b136e7d75cd4f49f401ccb2670a4f39d08290793fe5b449502114697187b4d8a
MD5 8c80fd84aaae2bf3d710547aa55f6cdb
BLAKE2b-256 7fe48d62faa6c0463243f24f22126b277a1eb3892cd0dddad000231b653ee8a2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 7c1a56d957d43526dbc86542055371d7d08b16545b1dc600d96e1bdf58710022
MD5 5e47b0c31fcc3f57e8a21a8feea0d4ea
BLAKE2b-256 9de8afca31bb9e51e7bc569a6e3fdef75daea9e737454c272cfe81bb269690ec

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 5f07a6c60a84e7193a2c8f58a1d5301c8e588581e626a790c6deea7488f882df
MD5 45df1b9b18eb394f38c49d85423693c2
BLAKE2b-256 06947adb039fb3c0a27330e944e266ed682a2ac37a566ed47ebc7fc26a694cc6

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 fa1ef31c57a15b3a7b9ae1a98b0ade70386cdc1a6f558a9a14c595a31efa0c0f
MD5 98ed93236877a0ae34f3f3102db7e1cf
BLAKE2b-256 38926524b8d8b37714e1b9f4eeb21f424dcfffe5317e0d4dcf3fecea20d4e9c3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 73374af09f6c367e6ee510a29dd7fdf0c9665e7f83de894a034be06275044e28
MD5 44e00d58b647bfa9abfd29e8b39aa80d
BLAKE2b-256 557392759ac7eb151418b8182dff295967c3459a254dcd98961cec0286e4b649

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d79558db8f67a8fc3eaac388b6c44237211c681ad32e339f9d2a0dc0f0939755
MD5 e3444619132e77c46fbde9a6273421fd
BLAKE2b-256 3f8dbf84a726a26a5ab2b8d61916a4469e48e7ef72bb1dcd7c4efe5d9b9649a3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ba0469c452302441464cb280f1bb53b1ab2f6332c15704b9090df001cf6305c
MD5 0dc02560b5eec23cefb0fa395db96e72
BLAKE2b-256 80689e12434b39d2b70318de1741d6d7065f9f0ee581f983f0050641a93e2ca7

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8e095d421f1a6e68552f31f9eaa83ac413e83d9da26df0da94ab5b73e7380fac
MD5 d0319e3645a7a5019ec429a746153f15
BLAKE2b-256 d22266ccd4ff96516eb75c2f32d962882ef689a14c0b1b838a4aeea4e3e358dd

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ca780acf0841b5380b57f2eb278d51f2dd78624b7c009aa22d0531e182fd7ace
MD5 74a61cc25f6c4a76f4048891ea2d7ffa
BLAKE2b-256 2acf71acf83231ea80f92996928ac598e7cf2c6d4b0051f3802629435660935d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1cdac2788eb868bcbc72515c8417193e7de64a5424a2bcbe243df26a9d2c9863
MD5 1b73eecb580014295a513261b5aeae6a
BLAKE2b-256 09747dec127d6201bc67aa24a5193054803928ed7eec13f7b78b8e5f4287addc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 daaa72ea878c780a18e8efd16fd7e8a45f1b8c37500f762505cccf955e45e579
MD5 ff64bbd30afa28c7a83c31ee8099e0bb
BLAKE2b-256 e43e5d6734cf1ac3b6171c917c2891f13ad0475a1df62214a4027395d93680e9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5a730b6822bd81f1b226478e15e12845bc5e0b2b4303e59f82b319daadb67b2b
MD5 b9d465ee9180c970b491b86eef505464
BLAKE2b-256 c4b9c22dc50f9995feb1d56eab16a0ae8281321205dee774c85416be6189ac3d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b955687c8e271b72dfd3bc688bf024ac600513d647362e610ae4f2aa69775a97
MD5 8d6b02bac04e252979adc294603161f6
BLAKE2b-256 a70e3063466a1fa7eb7857b362bc6c1b6bb0748696db6e75953efa3aac7b2d53

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9554600643c49f3e07d5a13158d474388ff2c991766421525dfb63faf5c53e4c
MD5 dab7a73ef228c389c6da013e907956c3
BLAKE2b-256 6de75fbab99ffa6431b77593c37c0c71d20eb0a913a7f3ac1338aa4d09738854

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 4312aa83b3f0e6049961b80c0166f9b5a9cc4378320d3bf6622af197a1e616da
MD5 0857b18281f45a6a362a81643b0a6163
BLAKE2b-256 e94fdbbb33809d17657025e7535d7886f4e61c1ef81c8269f35b55dca80f0a51

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 18d42d6e56a2fd6175020e5d94b8c15dd80efea9b9e3c83dba9f50e3751038b1
MD5 9a1e8d0feebc2adb1561410b2ca25e9b
BLAKE2b-256 70025f91f59e53ec07dd689e90ad82cf10e46e0d441d2ddb36d8edf31760b536

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 3e17a439087843345b847d44354827cdfd4b1a4830eccbc298b3388b0d83a33d
MD5 d1b968e75b9d545de9f2c5ee107f6f19
BLAKE2b-256 5476103522ca72b068ea9a460f956ee276be6a98869abe6da259921d8e278d5f

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 eabb6a6ffb8240a2cc88882421468b5c9dc9e5a56ee966ff63c7f59534173523
MD5 09355f0882a1c2463b57f62982f727e7
BLAKE2b-256 56399999d3d6002e60709703e40e24b8f49318416d7d146d16e2d03f81aa9d93

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 12cd11902f44ce6f99237cb1588c7c84842f7bf97241064947f91e8aecb35691
MD5 80161bf7abbf1ab43714e98ce015328c
BLAKE2b-256 9b0b14494438f5b283b4a84fe652b027fab3979a6fdb5757ed1063368a65f3d2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 55174ede61f097ae76947dddb9811e003a34ac1f00830137b8ea01046c2f6fab
MD5 d33e5a1a164ff74685212a7c04f777b3
BLAKE2b-256 0c5dcedbb9272aac47ae56d7d35c599196c359329eb9fcc1e0a72254230efef7

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81449918c7029492eed6ef015d4dfcc2c809ba3a21d175ab0259856c7524bc0c
MD5 1ded7aca27f4dc1723b7a914681d89d5
BLAKE2b-256 d65574991ff73fe88b21db2cca7a852f1d792f5a30db493e33bd79524a539fdc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page