Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as most unstable extensions).
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

For a complete reference of the types and functions, please take a look at the wiki.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, usually being a lot faster than numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems.

It can be installed from the PyPI using pip:

pip install PyGLM
# please make sure to install "PyGLM" and not "glm", which is a different module

And finally imported and used:

import glm

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
There is no need to import anything but glm, as it already contains the entire package.

For more information, take a look at the wiki.

License requirements

Please make sure to include the license for GLM in your project when you use PyGLM!
(this is especially relevant for binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

Note: This feature might not or only partially be available in PyGLM versions prior to 2.0.0

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

FAQ

How to pass the matrices generated by PyGLM to OpenGL functions?

You will find an overview on the [Passing data to external libs] page.

Types and functions are not available after installing from the PyPI using pip install glm

Most likely you've installed glm, a JSON parser and not PyGLM (or a very early version of PyGLM).
The correct install command is:

pip install PyGLM

Why is <experimental extension name here> not supported?

I prefer not to add too many experimental extensions to PyGLM, especially as they might change or be removed in the future and it is simply too much effort for me to keep up with all that.  
If you need a specific experimental extension, feel free to submit a feature request on the issue tracker.  
I try adding them on a one-by-one basis.

Short example

>>> import glm
>>> v = glm.vec3()
>>> v.x = 7
>>> print(v.xxy)
vec3(            7,            7,            0 )

>>> m = glm.mat4()
>>> print(m)
[            1 |            0 |            0 |            0 ]
[            0 |            1 |            0 |            0 ]
[            0 |            0 |            1 |            0 ]
[            0 |            0 |            0 |            1 ]

>>> v = glm.vec4(1, 2, 3, 4)
>>> print(v + (8, 7, 6, 5))
vec4(            9,            9,            9,            9 )

PyGLM in action

Wanna see what PyGLM can do?
Take a look at the examples from the popular LearnOpenGL tutorials by Joey De Vries running in Python using PyGLM.
LearnOpenGL

Speed comparison to numpy

The following is the output generated by test/PyGLM vs Numpy.py

Evaluating performance of PyGLM compared to NumPy.

Running on platform 'win32'.

Python version:
3.13.0 (tags/v3.13.0:60403a5, Oct  7 2024, 09:38:07) [MSC v.1941 64 bit (AMD64)]

Comparing the following module versions:
PyGLM (DEFAULT) version 2.7.2
 vs
NumPy version 2.1.2
________________________________________________________________________________

The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.


+----------------------------------------+------------+------------+-----------+
| Description                            | PyGLM time | NumPy time |     ratio |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation            |            |            |           |
| (100,000 times)                        |        8ms |       30ms |     3.78x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation with       |            |            |           |
| custom components                      |            |            |           |
| (50,000 times)                         |        8ms |       33ms |     4.05x |
+----------------------------------------+------------+------------+-----------+
| dot product                            |            |            |           |
| (50,000 times)                         |        3ms |       46ms |    13.53x |
+----------------------------------------+------------+------------+-----------+
| cross product                          |            |            |           |
| (25,000 times)                         |        2ms |      523ms |   288.77x |
+----------------------------------------+------------+------------+-----------+
| L2-Norm of 3 component vector          |            |            |           |
| (100,000 times)                        |        5ms |      249ms |    49.05x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix creation                    |            |            |           |
| (50,000 times)                         |        5ms |       15ms |     3.03x |
+----------------------------------------+------------+------------+-----------+
| 4x4 identity matrix creation           |            |            |           |
| (100,000 times)                        |        6ms |      222ms |    36.61x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix transposition               |            |            |           |
| (50,000 times)                         |        3ms |       23ms |     6.73x |
+----------------------------------------+------------+------------+-----------+
| 4x4 multiplicative inverse             |            |            |           |
| (50,000 times)                         |        4ms |      336ms |    90.30x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector addition            |            |            |           |
| (100,000 times)                        |        5ms |       52ms |    10.11x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix multiplication              |            |            |           |
| (100,000 times)                        |        8ms |       55ms |     6.85x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix x vector multiplication     |            |            |           |
| (100,000 times)                        |        6ms |      152ms |    23.39x |
+----------------------------------------+------------+------------+-----------+
| TOTAL                                  |      0.06s |      1.74s |    26.97x |
+----------------------------------------+------------+------------+-----------+

Project details


Release history Release notifications | RSS feed

This version

2.7.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyglm-2.7.3.tar.gz (483.1 kB view details)

Uploaded Source

Built Distributions

PyGLM-2.7.3-cp313-cp313-win_arm64.whl (1.1 MB view details)

Uploaded CPython 3.13 Windows ARM64

PyGLM-2.7.3-cp313-cp313-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

PyGLM-2.7.3-cp313-cp313-win32.whl (1.3 MB view details)

Uploaded CPython 3.13 Windows x86

PyGLM-2.7.3-cp313-cp313-musllinux_1_1_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

PyGLM-2.7.3-cp313-cp313-musllinux_1_1_s390x.whl (13.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ s390x

PyGLM-2.7.3-cp313-cp313-musllinux_1_1_i686.whl (11.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ i686

PyGLM-2.7.3-cp313-cp313-musllinux_1_1_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ ARM64

PyGLM-2.7.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.3-cp313-cp313-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (11.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

PyGLM-2.7.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (12.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ s390x

PyGLM-2.7.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (10.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

PyGLM-2.7.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

PyGLM-2.7.3-cp313-cp313-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

PyGLM-2.7.3-cp313-cp313-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

PyGLM-2.7.3-cp312-cp312-win_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 Windows ARM64

PyGLM-2.7.3-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

PyGLM-2.7.3-cp312-cp312-win32.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86

PyGLM-2.7.3-cp312-cp312-musllinux_1_1_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

PyGLM-2.7.3-cp312-cp312-musllinux_1_1_s390x.whl (13.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

PyGLM-2.7.3-cp312-cp312-musllinux_1_1_i686.whl (11.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

PyGLM-2.7.3-cp312-cp312-musllinux_1_1_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

PyGLM-2.7.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.3-cp312-cp312-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (11.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyGLM-2.7.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (12.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

PyGLM-2.7.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (10.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

PyGLM-2.7.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

PyGLM-2.7.3-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

PyGLM-2.7.3-cp312-cp312-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

PyGLM-2.7.3-cp311-cp311-win_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows ARM64

PyGLM-2.7.3-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyGLM-2.7.3-cp311-cp311-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

PyGLM-2.7.3-cp311-cp311-musllinux_1_1_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

PyGLM-2.7.3-cp311-cp311-musllinux_1_1_s390x.whl (12.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

PyGLM-2.7.3-cp311-cp311-musllinux_1_1_i686.whl (11.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

PyGLM-2.7.3-cp311-cp311-musllinux_1_1_aarch64.whl (12.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

PyGLM-2.7.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.3-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyGLM-2.7.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

PyGLM-2.7.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (10.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

PyGLM-2.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

PyGLM-2.7.3-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyGLM-2.7.3-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyGLM-2.7.3-cp310-cp310-win_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows ARM64

PyGLM-2.7.3-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyGLM-2.7.3-cp310-cp310-win32.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86

PyGLM-2.7.3-cp310-cp310-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyGLM-2.7.3-cp310-cp310-musllinux_1_1_s390x.whl (12.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

PyGLM-2.7.3-cp310-cp310-musllinux_1_1_i686.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyGLM-2.7.3-cp310-cp310-musllinux_1_1_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

PyGLM-2.7.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.3-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (11.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyGLM-2.7.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (11.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

PyGLM-2.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (10.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyGLM-2.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyGLM-2.7.3-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyGLM-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyGLM-2.7.3-cp39-cp39-win_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows ARM64

PyGLM-2.7.3-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyGLM-2.7.3-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86

PyGLM-2.7.3-cp39-cp39-musllinux_1_1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyGLM-2.7.3-cp39-cp39-musllinux_1_1_s390x.whl (12.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

PyGLM-2.7.3-cp39-cp39-musllinux_1_1_i686.whl (10.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyGLM-2.7.3-cp39-cp39-musllinux_1_1_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

PyGLM-2.7.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

PyGLM-2.7.3-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl (10.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ s390x manylinux: glibc 2.28+ s390x

PyGLM-2.7.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

PyGLM-2.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyGLM-2.7.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

PyGLM-2.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (9.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyGLM-2.7.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyGLM-2.7.3-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyGLM-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pyglm-2.7.3.tar.gz.

File metadata

  • Download URL: pyglm-2.7.3.tar.gz
  • Upload date:
  • Size: 483.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyglm-2.7.3.tar.gz
Algorithm Hash digest
SHA256 4ccb6c027622b948aebc501cd8c3c23690293115dc98108f8ed3b7fd533b398f
MD5 45dad44e836a438dd04e0681830e7dab
BLAKE2b-256 fea1123daa472f20022785b18d6cdf6c71e30272aae03584a8ab861fa5fa01a5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 24622c249eb315588c042df3b960d3bd90ab6e01caf52009b546b526575d5e91
MD5 834135760f482856e0de5e437a765b8e
BLAKE2b-256 03ec23be89423aa474d521791c3ae7c52e1dcaff9887406fb953f053585e11eb

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 68167968ee91ab176bf9a6e6afaadf4c0c65417c29fecc9f32c6da698ad028db
MD5 bf8a3b9d08dbd37cc21be771516e1f2f
BLAKE2b-256 96e4701cf1d5f724b2f9681aa5f6eb8924afd808ca359a29d9795c87b6c22162

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 c9048d98d622e8a95601482bd892a76c8da152bcfcef5d16d279c5bb507a09a7
MD5 731c8eef789475c68e2a91f7d246474b
BLAKE2b-256 b01c8944d4bd6a8e30d253893a15a4aa71e46da46a870d9c971431a75f12d728

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8e9f88e62962685f1b0ac4aed8d77aabdf5fa95c6bc4894ea15ac9dc79842ad3
MD5 c7ab87c06ade137448d18b43185459c7
BLAKE2b-256 31f792e89e3eb761788a823e0fa863b93ab2ae3c927b27c2eea8c90c607d06c0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a27c0e0594592f44a3eeebc628974f27095751398184050e333d07884c0f0176
MD5 0252ad56f315e34844c85e9741b6d46e
BLAKE2b-256 b1c629053e449bff3c7417928fbc21b67569c00109ceb3a105fb5c1c8666431e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5dfb81078d4f9bc5c86be7939f1ab6265192ed16d18ab06fd062c6fcbe649195
MD5 59d2945a762b10c3d735e7aa36c9ad88
BLAKE2b-256 ec51e5e20232bb1a667fdc5590a9841df79a2756cb4dffd3d7fb254885587bfd

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5c3425a3118924e0d148b9ee6dcf6f001fc55326e9f2bbed8360c5d71575e28e
MD5 0b9b2a4c0eef397906c11e1082fa0d61
BLAKE2b-256 5851609b1788dace10b720074548c09c2a41f1e4a33ceab7651ad5b108919044

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f8143b81200d9c9d26442a7ba1614d64aeb319363057bec12d9330591c4f8cf5
MD5 cc05f257d0142b9f61a8778fda4135d0
BLAKE2b-256 1f8b58b6917eab49167c9b7e955067c17b8f12d8974a13a158d06a2a8dc23290

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 fe0451bc8973260fa9e029773a57d4095c5e08a9f88a979f9699dfe196a956d7
MD5 08b4e71399b86851672e4b591b852821
BLAKE2b-256 eb32237e544cb5d7800064c1affbad551f281de0de5302e11f9216ee0e1781bd

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a415d83a20021a2544276cc122fbea4540493f7a30f9e08da7d185d04e9ca71d
MD5 c2a1149680dcd0bcb886c9aeb2cd7b51
BLAKE2b-256 768a4708401d2c9bfae750c3017ffe9d1bd024bc3ebfadcb72783c85205a5a16

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d1d471cffee49dc2256f1c9f43600224e10a88a128dfd398b2af2e2104277c
MD5 6dbf6eea872ec1cdac459c15c5df6a73
BLAKE2b-256 18ff28d76e80f8b609465ac91170edb913a9c8351db1fbf5432b429eb43198da

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5af9ca9802d588910d8f72706690dcd276a82256a828a17f1a4bf898f84da82b
MD5 e037e86b2ff91d98d610613c31c87c78
BLAKE2b-256 c2484ec974cadb1781a45ff3e281f32062057db51aecf43f82c88e8eb10d9809

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7b846eec69f21faf17310562bf7aa3163b2e6dad391c2ddc22e76d3dded8b2e5
MD5 73e44db2754163d0b4de383260d9df35
BLAKE2b-256 57394e22b584ae28a99a36057883492eb63f453cf4fa07b7f65d04a4ebd77385

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1928999a93ce156665f72b3c799c66a539f114025f4bcae894d46f09ff0ec39c
MD5 4ddc2411e4005d5389ec7d4cfb49651b
BLAKE2b-256 8f3b3bed2074836bfd311362f6c2b5809297e1848aa8c33ad7ed878aaaa265ee

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8fe12b0b048e9c5d35647f05ee7fa6c0aebedbc1cb6d4b4f75df5d7b9c16ab3
MD5 6e5d3e09904473c2115278c3d7fde133
BLAKE2b-256 92482cb33a89245ea0235578905d89dbe633decb1005a4364068ca82b797be83

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d38d3e15098458f7c13db98c3bed936aa6313f7d20eb83968ee2b4c36a7722d6
MD5 2a16031a06a08a01a55ab230412a9426
BLAKE2b-256 ea0a12ea6f3ef6c0ccec95126d639e02cbe74954e54447b3fad27c808db90004

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 5465b95bc92d0807a5289559bede5e18f084a6940a8d607f4fbe2457ba21989e
MD5 cb3bcaab1018e22ed8d8212fb33b0b88
BLAKE2b-256 9bb0c145525c037b3f9e88803dd45f33aaa718b00d598c0a57db6b9f7763c4b8

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4018fbdf125b95d6295e2e3e9f6b1306a204df751d70736f78144cdde07cd721
MD5 517f05e3f9532ab77d41518b86354312
BLAKE2b-256 f3252bb4ae6ef04bbd4b4129b63497757e5c72f94805b6f09dc8cc085816ebf9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 8b2cf3857dfe598e8f7210aba3990b6b3bc73cb7ee43d422ef8920b1e28aba52
MD5 e04fec1afa5993fb1e3ab58e042b32a1
BLAKE2b-256 e8c35259f4c683d4fdfe552229c572750802d4cc630a2283d0320e66785d3cb4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e37cf83588ff9bc0e8019612c667c4b45a2b1cb195e3890a4609056fa2eda8b4
MD5 4d286d9b893dee547bebe535e1ba98bb
BLAKE2b-256 e08def84ef6eda2c25a8429233637d54db543721fb7a255b6f885c649dec992b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a49f073a52ca26bf7672aa0685a75f0cb41201e84094ef8aa08c7d9432436bf5
MD5 3a07053fda3caa66a2210dc7b02287c5
BLAKE2b-256 9387e01a1f6c3ef40cb5266199a896b756d3d7bc0bd34a24613da213a572772a

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a71de9de8bf2c585777fdfdde877082722582651a65cb6ab1e6be48299cbdd56
MD5 c712fb0728cac7ff84e75f36458eecd6
BLAKE2b-256 afa71fa292957b290e4cf2cc62d42edb76545d4773034e4e5a2fb1cfe84c350d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 598404cdfc3fe5bbd6429a1c7879bc6516057827c9e6c2879b22167948854ec6
MD5 4eb62e4cac52c539e77beb34d041320b
BLAKE2b-256 c50c6dea0ceecdee3e7b9479bc44da6a3927f80921280d2e0d0994d6d3b70a19

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5846787ae297623fe2a09e2a94814f1ca71a80ab929edc5bae93fcbefab7b559
MD5 01fbee5e2200ecdc998667c8b0cce793
BLAKE2b-256 59eb093167bfdd143f2920869f1ff1ee85f3d1c7f51ebe8d9cd8cf587de9bf84

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 a8253002a1732622bbd8c605baf7ac03b9e1629cfe1136261e651b82204e31d7
MD5 5323243731dd8d1960180bb11f9e1ba3
BLAKE2b-256 45e57d1fd80c1554cae210aed2df37524b4c2ad76b67fb069d5012d585a41196

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bec15034f7c21b2c3c1b70d878f0590aad6a445a0e1290172cc90dccc7a71afb
MD5 a5d583caeaa7ebeffad7674aa198be3d
BLAKE2b-256 47bc0e7c58847c2ab8f4fa62c6b7c4995c94c9ef50e7803b5aa65cfd9861fcd5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15a26ac12fb7728b71a45ca9535e6c96cff5a9a1e5beae306ece37073513d519
MD5 6ed6dc7c343aa141dc813c4aabddad26
BLAKE2b-256 5ac939bb3a16e4402dd6f24a0a923d3a581cde086d7ea4d5cccb9672bf370e03

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b9b193cf4d16b2f43d3458aeaaa29d6cad4f5f2518a3562f3c9b6e361d2d2623
MD5 6e1d4d08068b19d7805e1c827fb948ab
BLAKE2b-256 0febefac9990e7f95838ce00fedebc1a9713a273fa0f9580eb816ef7d291d489

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78bb3f32fc92bf0f86527e8143ea861365fdecc05725932eef424346a1948b5b
MD5 fa71d815981a308734028606a490f7b2
BLAKE2b-256 738c2055c41930860d0b2294059fd0d820e6b376e8cecd1459b0a5f7f9632ca6

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 243890559980131351281007e308e2db0dc52f5dedf1ce0f21383d32cbd3f367
MD5 e3f70c7d54e5ee7cc22612c6e50b65f1
BLAKE2b-256 b155bc257f2ad7d499ed0c267e744d8c2e838600dff98efb9d43a7cc8752a93a

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 265827ca2eecc7f50d1a37c412b6ed8118ec909f4a5198b2c0a7a914bc33c4a0
MD5 b521ab4765cf9065dbce04bb9acb95a1
BLAKE2b-256 dde3c8486e4f82b6f88381e405f3fdae36dfd822c726b42da8251bca87fcdb61

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5bfebc0caaa0a0096957d984416081a503b1cbd2ba79a0cd0add64e741144247
MD5 a5036632076c0ef79865a17ddbb7811d
BLAKE2b-256 08318fb5f31eee897daf8b579410c52c275c72be80245cd6ac83a0d86b1ac1c9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 313a05afc0d151e56d5536db7da695e7bba5943a3f96b71ef213f4bc59715c93
MD5 08419ebe81d5db682de3e72a2dd872c2
BLAKE2b-256 098e493bbfedbd72269b31e743f5039fd2171c89e47b18bd5fc83fcd9bd6d6fa

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e6472feddcce4138caf19dd25a948530460823bdaa7c8d87caa3bc8a1bb1089a
MD5 cb5c1ed0c4bf43adb1b5d43044a994ae
BLAKE2b-256 57f8096a5d7dc690a731875060f1c56bb2a01cd52d8996b5836f94f1005c1b81

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 823ed2564064c863d03753e40fdd840703726b072a53f61c0a0441643e1ec56c
MD5 89e8d0e4e6cd65fd30d4186d4e039c19
BLAKE2b-256 0ea29227cba820aa3f0820179638b910413ca7e707677e6e4d7ef438b2898e54

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea99eb075c47bb1f0c7e405b0d7dda966d5c880246e93191a73aed22d3aa04e8
MD5 32ffb0b93e1863522862b12c53c1942c
BLAKE2b-256 eac5d6cf4f614a39644dd54e734840ebab4386c84c5f04b753c08aa074ad5be3

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f4d902a22f3643da2d375140c9ebe69c9a6ef33aca518f64671540ae7fb37149
MD5 c577b184292416de095ebc8d341fe646
BLAKE2b-256 90cdd0a3ba7f8ccc35364814206e1aa66ce1b2254fa59034ecf1ec6978a957ac

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 02338dfec947cd661e9969d316ba6e7500afcb86f0a0722dd4f5709a8557e570
MD5 b0bb21cf67edde5aed72efc950bb2718
BLAKE2b-256 d8554f14328b193e14de2eb0fe800872e4f42ef821729ac2b300d8d40c2c9ae0

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ff169abe8923c7f9eaca21b744fca58ce29e611cd1b09025d7e65aaa8f4149a5
MD5 2e8a080a869758c820187623e6d2a527
BLAKE2b-256 8ed7992d64305fcc0ab05750f053fed43093ce6e7ed1ad8ef3274a913a831a93

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a7d925dbadaf642a2aa9674081ce2df6193c45519f38bc09a6f9f9861a202e60
MD5 80645adca613c88dbd51efec30c3a0ab
BLAKE2b-256 9780c71a5c4527b95fc56edf68467cf9e73dd350ed1f12eb3aa544b3e0e29050

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 7bef6e2db2242613ce594d8dbe88eefd74da94fb141f8943abbdbcea2d905249
MD5 18580c4c61f6e43cb1321f7184aefc4d
BLAKE2b-256 aa0b5309d7bc160d3a839baa4ce43a039fb55e995fb82f495576b21a8096f648

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c803fa9624be0498d37ee035c496e0b5ce3f720cbb6c6a33b14a5c318f01bbc5
MD5 f7895c9f8d00f88a0ddef7142c41870d
BLAKE2b-256 4b95c44e8fb1260447a9895fbcc090f8fb6c39a29609bf26ae2bf6938c6f6995

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4df26b2e793b90a12e8cd9ddd81e715889e7760b202f6307d221144022bd3a68
MD5 c80d6d390765bc53b283d4a9b4851872
BLAKE2b-256 f7d1558cf41caae368ec049ef87f5051a442e8da0224b248ea5ffd490aa927e7

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c75eb893c0f2c08b75f8b0aa5f2fd382cca65e9bd907e858e10fd2341110e2de
MD5 415ef9b87f8544dc5857d83dd2726edc
BLAKE2b-256 84d3efa05c0d127762cd0c28eaef7cd3c1f1e578af3143862920a8d916caf978

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e9504dac2ca742b0b5199ad3ab0ffcf56759c8c1a9ca0f9252258784163ef3b
MD5 4ea8203d1fe7d5edb76d25ddc28620c4
BLAKE2b-256 71e54b352e838e9aa17ca21cbc34f614c60e48504384fd0a4ac783bccd27cdce

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2422a8119a85500546fc3b95d0a035bb768b0002376070e4ef91015b8bf4e01
MD5 1dff77d808a4d7ba8ac1581bfb3ffd34
BLAKE2b-256 7d40699c7f49d2233a7b77e3b6f1e29689f85d0df2a532980599c38b55184589

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93b65bab6525e3098ff99c933cccc635716acf45a8c4bdf27ad432f183a33923
MD5 648ec093298c1a949b743573ea9fe792
BLAKE2b-256 237858e0a21f214ac1383c23af8b01da54b750c474d6489c4b519c36bd2620f9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ad68211a45b02f8d5d47f067153aa1084c6ab4026b8f84eb6e8b5165a7394ad
MD5 6a8f53889f62a6482e652b1d37a477f9
BLAKE2b-256 314f601a3fab33fd169f27d0a2890468854fa425dc00c71f0fbdfcede13a350e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 bc60ad3da261d2866826dcd9e7ee55bb0dc5e1160d8226b2b7f1e431ae7c6200
MD5 6ac56ee29c6d122fca6c3df5f7142a73
BLAKE2b-256 d25ca1302a1fe3342d442574403eb767dd58aa0c7c32892c192d8f42bc33f88e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 27731736bd37cada8a7e975030d5bcfbd0f448162a607a2c53d088512a106f82
MD5 0faf081d0d1cf189439f3b646765ad2a
BLAKE2b-256 c55197163a307573a32f1895a35cf011cf22fb923c6c506c47454aebafab943d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 37e2501434465c945f0d87626d6c2157bd2aef3e3bf65c37ab953d914428c488
MD5 5777e47c46cf05e27eb27de5ccbcd900
BLAKE2b-256 8cc5a606c515783bac676c1e2a16a3daedea084a5f5b829e3b754f8be885b28c

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 26a0abd806408eebcada608d3eaebfec73f7b2500ea645ff2fd7d9db470ba565
MD5 3a1d8370bcc630189a54f8e41a41cf76
BLAKE2b-256 3659fb221c984c69b8ae2457d0299d716dbf043be030d1064ff37cd382f3ebfb

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 75dc188457f99cdd4e621d3b932b0e844688135c5b0aefb42c46efcfce7b7270
MD5 f1483760b0068da5d2e9e998bf9deca0
BLAKE2b-256 d7f47399f841697b280e729092e761b6e9f87bde7ff246465e4bbf919bd8b74b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 119fc3be9db079c98e48978677b917616d3b9e058b791ec258c5b57eea4d11bb
MD5 cadc06d5baf8c3c75535660a6b6a2325
BLAKE2b-256 51f66d46eb631ff565ee6b71f23faed95947d7f87bec516fed4bd9f3d43910cf

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 629ee77eaffc340a4bac722cd2621b076d8eb83809b74a27e13be7624d78df2b
MD5 3c27471634a606853e48b336796135c9
BLAKE2b-256 0a687aedd919ba820db0076628b6bcae9d9c2e60e7371ec73316dbf9ad8a30bc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 011d4d67240362b7e22af2ce57b216be8e3caa19dfd546e31d41b9a38612989f
MD5 914bcd35b0d782b9f63b687e4c04dd2d
BLAKE2b-256 f60d059e6d1c9835899a00dab42aa59d007f4297b62d513f4105b4b3ffad2cbb

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 72a2fa3b37ad52d36ff4dfd6bc5476ed4ee8cd167543c283b583ea8618b283a7
MD5 eec5537af1493349ff67b95a5337b890
BLAKE2b-256 49351f8097be67f9295147191a06437401636c83ca07a02de8ff113a6da6f1f6

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ab0e13efbf076c8eb35f2f8d52a549fe3251a650e21e6e00f4adddd3e71c6e5
MD5 47623d9fc987ccf7118115222851b8f1
BLAKE2b-256 c5bd3bd9b00f7fd54efb50b538a692ec5253fb10861c388d5345a24dd1a8fb53

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd51aa7207f4c2ce4d16c221bf6d50f3c1043aea44dd28ee3a94eddba43ccaa7
MD5 54f5b54d4df36563c2a697b38b4ced5b
BLAKE2b-256 cadfc4fb4c4247ba37fe9b24b189c76dd1c0ad7d51e238cf86be8beca54f1f06

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 da1d6526e718940994721fce85caeb7d3ab01e395d5652a0beb89b38add554eb
MD5 119b96b0d05aae7df04000f103de4598
BLAKE2b-256 b3af52539e9fd3c16c7aa095a8ddd7a5542a69e6f5eef63f217b51074e54763f

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e5d38c5c39961e7cc704e4ea0c6cc4eb86e9879420fa13a51158a95e1ebfcec
MD5 99d819dedd922feadfa0bcd87300a17e
BLAKE2b-256 736062b7305670658058db4b166a780bf8062ecab57501f8b52e3197abb92fbb

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f642ba2f52a8256c4d555486e9eab33d9417145cc2b68be237f4f10cbde08ade
MD5 0a41e0bac7b9f154751cc1e4640516a0
BLAKE2b-256 91518542ee787afe4939e74aa634ada05e650896688fdaf4d7d0869f4dfc4711

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c52d06037ea1b0b24274e8a4ade49c9d82902e317e10e3233db7e67ddd2ded1d
MD5 48ea140c64064acd0a7c477184cf51b2
BLAKE2b-256 819db23408826f86c2c8204676effb744f998daf0a9141a56a80f4b289e6f609

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36ce22f992af9da9a780f6232d184c9e2269be7e5e13f2fd35bb781536c31b9c
MD5 283f99e3fc70c89f382b438b8d8d9fc5
BLAKE2b-256 fc124f2d76d5865ef2fd41a86c06d85d9fc9f5c53f84b681363df70fe18e1828

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 6a60f3a3f89af1428cded8e56f19c012dd331c3bd860923d542ba4837418a5d0
MD5 98c1c8ea3ccb4e8addec0f5c26d5ec08
BLAKE2b-256 839aea3cc49009505cddf7a16f6f42827428eac37e7f976a29f1455939d46916

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1689cbc0aec27107b933b9afbece524469257da6ef2ab78891cb77902e47259b
MD5 ef23d2c0723dce5eb7ce8b9a4f2e3398
BLAKE2b-256 cf78f6c8723c525f30eed41a4b5585f76c9a1f6c29d435f39e0fb166a921fc8d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyGLM-2.7.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 868b455946ca659d7d2344afffdcf3f4b6b57270b43b7428848661976dba8803
MD5 72091538b77014cc53a862e9060f78d5
BLAKE2b-256 1b31220b1102f374acccfdb6800c5393ad1238fcfc43d657e3855881701f2eb5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29dd15a559df75acdab74b941ace809f81f20d655d6d616c09b85d2ffc66b5cd
MD5 d27cf9608273fa5a86dbe5ab8c49625a
BLAKE2b-256 3e133c600a3533da83168438d344af31f186f52d31022c69456fb93512f4f99a

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 472d92fbbeac5647a91adfb5d1b71a8368ced8b6cd92654822290a34de87a2ef
MD5 17478eb8480ae934c581737258e7b0d4
BLAKE2b-256 a6abee1860f6a43b8f66825be3fc9162791d50c0b1e6e83e15399e1961759f87

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8f6c24c2072f6898b6a2f64ffec16a08243451bee9e969344659f2323efcd4af
MD5 0519b6715a1894ddf4144d6e47ce3e40
BLAKE2b-256 16959d5766080ecb438e52a20f4208ed21f2705218e6714ed0a0bc98f721d71b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3408cda39d1181ccf37a3171298df4acd1930b7335b20835ae8ad405ae902100
MD5 d435e9648a68a1f641955f46347c6567
BLAKE2b-256 d54e9b6dabb71665ca18835956a1ad2acb73ec0178750c786e04c34cfe5da7bc

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b2a4a21ec5c79e0f5e8fa460520f9e1ac453f6d0804ca6acd679067aec3b06fc
MD5 5faf9e19e33b2a8b7670c74103252704
BLAKE2b-256 17682d027d49a2dd965ae15052aab9463a69e589dc9fc6fa99a4d6c8c8cda50b

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_27_s390x.manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 9f37b1f19114cbe64fb11ab8c559fe6cc7af143b8f1e77bb812dd74212cb4e6b
MD5 5a54613e41bed0ad8b7ac9fae2f4b6cf
BLAKE2b-256 d271649dafb573b08caf10b74bd50dcc9c7f3bc755848cc490af035e38379bc1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7c663673842b0aa0747aa1b26b584dfdffc3eb3a7611563eb546be44bbb9c98c
MD5 6bd9fd35724b8e602c35fd670c29e04b
BLAKE2b-256 de569b966a93eaa5f889a738de0f95ac90a55afd9750cd363960ed461f661ab2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0906751e15c003428c2099a8230f9b7173ef1e0c89abd92d278e28600f0a0277
MD5 70e0325795eda842a39c098f764c6a36
BLAKE2b-256 8f91ef745ba80a7f492e12698aa78d69c24b034dc0cc6295997a1cbb68f44c80

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 45e66c96d0b11587b4e21ed72bb0dd2a27bb4d12f75f26dc9e08f6d019c6b5ba
MD5 7f0ac7c7b8ebfebbff814ddc93a284e9
BLAKE2b-256 eca64f5e415e7cde34d0721c3d06522ec8c84a0b37b364c14424b9d0f59ca17d

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11250311e3b0813f924147333c28658aa00c93a4ecc173ccbe95c145e4ade14c
MD5 ad7c4a7a2c35926c07abce265963c298
BLAKE2b-256 9b291581ee3bc6d29c0164f331f0d683009b6319d32adf134733ca08ef0b2425

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcc4d575e20118c938bc451bbf7d69e50440e298e1be4359d2a1a4c8568866fa
MD5 e7f4f72f5d9e99638613e5f54fe60407
BLAKE2b-256 7912f218f42410a8c511ad77cd3114e11977fb5af5d58ef7cf55355e4edcd44e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6467e217ebb6fc9356ae77c2e6c807d9e4470b5db59006dd553eee5888815538
MD5 753fc3ad5ccd9a2d17731e4b17addf8f
BLAKE2b-256 48a0b63e3571e3cce58287a3c4c437d1c04645706062f0075a8e427f7b1362f4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyGLM-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23fdbe27e16b03206d8635dbb842fae6a470a7342af7c2395509c20607fe0251
MD5 d102ecab9220328bd4614d9b29c5dcdf
BLAKE2b-256 1670be4a9f6ab40c04ab05df794646f7b74d903dc0a4cce00a7316bc6051541b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page