Skip to main content

Python interface to Hive

Project description

PyHive is a collection of Python DB-API and SQLAlchemy interfaces for Presto and Hive.

Usage

DB-API

from pyhive import presto
cursor = presto.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10')
print cursor.fetchone()
print cursor.fetchall()

DB-API (asynchronous)

from pyhive import hive
from TCLIService.ttypes import TOperationState
cursor = hive.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10', async=True)

status = cursor.poll().operationState
while status in (TOperationState.INITIALIZED_STATE, TOperationState.RUNNING_STATE):
    logs = cursor.fetch_logs()
    for message in logs:
        print message

    # If needed, an asynchronous query can be cancelled at any time with:
    # cursor.cancel()

    status = cursor.poll().operationState

print cursor.fetchall()

SQLAlchemy

First install this package to register it with SQLAlchemy (see setup.py).

from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
engine = create_engine('presto://localhost:8080/hive/default')
logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True)
print select([func.count('*')], from_obj=logs).scalar()

Note: query generation functionality is not exhaustive or fully tested, but there should be no problem with raw SQL.

Passing session configuration

# DB-API
hive.connect('localhost', configuration={'hive.exec.reducers.max': '123'})
presto.connect('localhost', session_props={'query_max_run_time': '1234m'})
# SQLAlchemy
create_engine(
    'hive://user@host:10000/database',
    connect_args={'configuration': {'hive.exec.reducers.max': '123'}},
)

Requirements

Install using

  • pip install pyhive[hive] for the Hive interface and

  • pip install pyhive[presto] for the Presto interface.

PyHive works with

  • Python 2.7

  • For Presto: Presto install

  • For Hive: HiveServer2 daemon

There’s also a third party Conda package.

Changelog

See https://github.com/dropbox/PyHive/releases.

Testing

https://travis-ci.org/dropbox/PyHive.svg http://codecov.io/github/dropbox/PyHive/coverage.svg?branch=master

Run the following in an environment with Hive/Presto:

./scripts/make_test_tables.sh
virtualenv --no-site-packages env
source env/bin/activate
pip install -e .
pip install -r dev_requirements.txt
py.test

WARNING: This drops/creates tables named one_row, one_row_complex, and many_rows, plus a database called pyhive_test_database.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyHive-Hack-0.2.1a1.tar.gz (38.5 kB view details)

Uploaded Source

File details

Details for the file PyHive-Hack-0.2.1a1.tar.gz.

File metadata

  • Download URL: PyHive-Hack-0.2.1a1.tar.gz
  • Upload date:
  • Size: 38.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for PyHive-Hack-0.2.1a1.tar.gz
Algorithm Hash digest
SHA256 8079b642cc9cf41c0661b72ab9671fec409553d2a6be84569802e18b5b7df5e8
MD5 ac39b17c4abd30202cc467d11247eaa2
BLAKE2b-256 6844b042840d89ea6fd5224103c45ceba1baf36094a7baf51c6fbb983e036117

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page