Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/dedupeio/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Part of the Dedupe.io cloud service and open source toolset for de-duplicating and finding fuzzy matches in your data.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install "pip>=10"
pip install -r requirements.txt
pip install -e .

To run the test suite:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.16.tar.gz (134.1 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (59.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_11_0_arm64.whl (51.9 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (56.8 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyLBFGS-0.2.0.16-pp39-pypy39_pp73-win_amd64.whl (53.4 kB view details)

Uploaded PyPy Windows x86-64

PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (59.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_11_0_arm64.whl (51.8 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (56.7 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyLBFGS-0.2.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp312-cp312-win_amd64.whl (58.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

PyLBFGS-0.2.0.16-cp312-cp312-win32.whl (51.5 kB view details)

Uploaded CPython 3.12 Windows x86

PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (353.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (348.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (335.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp312-cp312-macosx_11_0_arm64.whl (61.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_x86_64.whl (66.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_universal2.whl (122.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

PyLBFGS-0.2.0.16-cp311-cp311-win_amd64.whl (58.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

PyLBFGS-0.2.0.16-cp311-cp311-win32.whl (51.5 kB view details)

Uploaded CPython 3.11 Windows x86

PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (347.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (343.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (327.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp311-cp311-macosx_11_0_arm64.whl (61.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_x86_64.whl (66.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_universal2.whl (122.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyLBFGS-0.2.0.16-cp310-cp310-win_amd64.whl (58.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyLBFGS-0.2.0.16-cp310-cp310-win32.whl (51.7 kB view details)

Uploaded CPython 3.10 Windows x86

PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (325.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (319.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (305.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp310-cp310-macosx_11_0_arm64.whl (61.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_x86_64.whl (66.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_universal2.whl (122.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyLBFGS-0.2.0.16-cp39-cp39-win_amd64.whl (59.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyLBFGS-0.2.0.16-cp39-cp39-win32.whl (52.3 kB view details)

Uploaded CPython 3.9 Windows x86

PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (326.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (321.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (307.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp39-cp39-macosx_11_0_arm64.whl (61.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_x86_64.whl (67.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_universal2.whl (123.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyLBFGS-0.2.0.16-cp38-cp38-win_amd64.whl (59.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyLBFGS-0.2.0.16-cp38-cp38-win32.whl (52.2 kB view details)

Uploaded CPython 3.8 Windows x86

PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (326.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (321.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (307.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp38-cp38-macosx_11_0_arm64.whl (61.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_x86_64.whl (67.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_universal2.whl (123.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

PyLBFGS-0.2.0.16-cp37-cp37m-win_amd64.whl (58.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyLBFGS-0.2.0.16-cp37-cp37m-win32.whl (51.8 kB view details)

Uploaded CPython 3.7m Windows x86

PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (292.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (286.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (272.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp37-cp37m-macosx_10_9_x86_64.whl (66.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyLBFGS-0.2.0.16-cp36-cp36m-win_amd64.whl (65.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyLBFGS-0.2.0.16-cp36-cp36m-win32.whl (55.5 kB view details)

Uploaded CPython 3.6m Windows x86

PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (275.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (264.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyLBFGS-0.2.0.16-cp36-cp36m-macosx_10_9_x86_64.whl (64.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file PyLBFGS-0.2.0.16.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.16.tar.gz
  • Upload date:
  • Size: 134.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16.tar.gz
Algorithm Hash digest
SHA256 6893dfb7b5c26e3a8e2c6884e0b18c6048d05e0932f02021a75c35bee5c53d46
MD5 a9fad3bca4255e11a572ba5cb80c6880
BLAKE2b-256 b350160e50b138663e7a8fd3a627c3f923f7ffa8a4357bed0fbf81d7b39f5634

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5695172bd22a3e0a0d0a78d40d302d7904d3d059599159bfa78eed27a0da207b
MD5 8891c4202083aadd90c02cb0c7ea7ebc
BLAKE2b-256 9e14f0553396a87705f5b207faf4b4cf1466751ff42037219cb41fc84b34ae30

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee8c96ba7f5745a70aca2b97d08fad480787aa40a245f73e1688b42f2e6aa25c
MD5 eb824dc3ecaccb1dfd6bb165b2d79a96
BLAKE2b-256 41b2ff1dbaf57605932ff50ccc5b30b2201ce4257be042fda6c8027b954248f4

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe09792c3c9b88eb609ff94b791f2d1cb349def3bf0f64759424e927a87da09e
MD5 b7db994f0daed57aad208553c174fd54
BLAKE2b-256 892e0f5087bf03d97d3fc07a3a4145b19f5bc7a7d0ae6f67ab01b8aaf0790c08

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 655ac8a71f9cefa29acef64cc17b9ded658c6bd423b3f067e47397a01e03b2d4
MD5 c336476d540f37c51f45679e8d482a5d
BLAKE2b-256 d1b73d718420e4fc7393e507f26e8163b00ceb6dead07e7cd928900a77395d04

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 357d1f9787f89b03ab213de7cbc0eb6734de2885697e49292b066dccb9bcb9b7
MD5 49e4edadc13c2cf95081a4e939b2e719
BLAKE2b-256 ad83d852f6d6e16316a01bbc2e619d0cb68101b42357dc76f0ed669777e71e55

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c772999a75d44186b11d8ead2d5455e677d081ff0141ad9b7a2b330052f7648
MD5 3d586530bd536c91a7e5741cf2d00781
BLAKE2b-256 9041a32a9181b053d8499a074a8a78a392e68ba6bcbb656011a2c011747d1761

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28dccf363ff3be5e824549800f0ba6146e1fd0978595355e28242f5ebee3d378
MD5 6e0d7a4c39f45da207924552aaae80e2
BLAKE2b-256 a19a20aa841d86a7ad1311c6c08c1e0bc42a37ce772dbc4cc466c66795c6d6aa

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d1a79e6253eb12a1a090236b728a267dfff27ca473ed68373a48a8897565b95
MD5 9de10da116a03c1c0af962fd62f09188
BLAKE2b-256 2e1c47c3e26ada01bc19a51e2d604e926951d8ad1f68af465e7f7d862c56f0be

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dbd7abda4397e49fc880cc879af50c93e0c2985638877a6772deb37ae3854520
MD5 40331f9e62d12858a52c7fdae45411b3
BLAKE2b-256 126fa25f02883d13832036d6f773ef6f33de88c47818d98312ce419056106738

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84de96de97c9665e38b1b264a97f95584577a7f7ebc3c695ddb5fe014c94b94b
MD5 0e2d42a169017946729d4f25dfa88ec8
BLAKE2b-256 1212ad0d9cb7312b233829376e47ca76290c62bd03321fec3d1f7415f5cfd89f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d1820c7a4dc6fd2531bd9f3c58eed06b375bb922b30ee4073e899bc4ae5bd9d
MD5 633a6c3f02be61fc9e3e09d997399f4f
BLAKE2b-256 6060f49283dbb9b08bcb3572c77a7069931a6ac2937545f54596094d05340e94

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2ad5a54191066114f63b21e8103d3eca3cfc7d71561cd06f4cfbdb23b5ac3e62
MD5 2b09c6204a11ead8d07db449bed150ae
BLAKE2b-256 3fa162aaa5e7471abf8748c476ac467d62c1b417d66be50ce8a1c0a1b11df426

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp312-cp312-win32.whl
  • Upload date:
  • Size: 51.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b6b19902b48aaea4dd44c4fdb09e25535bcdc14b163fa91239bd7eb726f878dc
MD5 f74affe8f1050a68d3c28b513b09a605
BLAKE2b-256 d8322d7b21c6b7382a2f6f061db7d657d3129476852ed8ef520d4bc2e9aaca7b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc611601eade67c2ee99be58a3a7347d85d4bfa878500a66b2b5663be4899e85
MD5 fe4c6a35abac9cf3e6b324df4fb4866b
BLAKE2b-256 d5b981ca2714218963bf01d9547d202a45f7ec436ee2da655d5bf50b127b0eac

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85f59ec58aa9bd4fea896e6b8f66f03761ab6f89ba37164ba2e67ccecc57d4b7
MD5 99477901de95bbb8770f273a218d8883
BLAKE2b-256 0316dd29064f7e8a3721084b1445c472ca703c25307c82fea3d6afbf0e959cba

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aa0a729457e00275ba61ba071edb72a151e12c26cf7e773f02ace6c698a9b17a
MD5 cf31694aa7daef3fa232f8c852fa99dc
BLAKE2b-256 30e9f2d32f1d0a64825f89914912b033afab8fe24aea09e9486c4a0f80c6b617

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbdf191b98346950a3e16fba04ca7e9269a3c0f8467b26d4afbbe45d7f371a0f
MD5 eaf9a2edfb6d5a028fb998b0a4e74361
BLAKE2b-256 24ac6e40f0f94153cd374103facd1dde196e02bff6bb2e1e0908ed5c2a466045

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b37520ead7bd022be20b2bfe41e32a9d82a43789c57faac338fa06eb889cffe
MD5 9da6ad0771cfb55dd39ee50229d2ab3a
BLAKE2b-256 2f1e645a7f4eb2b3c8aa13239c458b21fba3d7c92a83fafa77d3d7c887c20fda

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1a4dc2f2b44cd4eb45504c63a1085421c306f0b5f0af70965651d84b8c078870
MD5 5d29fb663c96d425ff40c58e89d11817
BLAKE2b-256 ff30173d45993da60a7409f9400a070e271fc449a5d3f46c276469f153f2fa3e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d87f082f595a2d565a6a1033f024cff193f330686c64edab42a02fb04a4e6c53
MD5 a6ef6ab19478fcf9b858e97be4dc53cf
BLAKE2b-256 6fec0a818dfb071167ff225ec7955e7e6fb48cc2dae2f1843a1c17bc4b3b9c2b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp311-cp311-win32.whl
  • Upload date:
  • Size: 51.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1f92d4ac9f3434b8fe9296c3ae34ca5f9068f8d3888a0477cd869e2bcd06e0df
MD5 17b57ffc6406638a1e38540a0867fe96
BLAKE2b-256 b29e2ef90680674a90a8dc9a60e3634fc11abde58b64a612b1335be41126e12a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4221d99ac730d3fd67584ffcd8a3915107fb68f3028e6758048d082642ead7d3
MD5 3174192666905391a17753b8c52446ae
BLAKE2b-256 a973df6fe46fe604c48ca81022cd9de579c302346c577263ff311ddab79999b9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bbe41cda172049b3404143e4d078e07b7e15e57c94c6e3844af00802b4a66497
MD5 b88df9a350f759e680c1903332183efd
BLAKE2b-256 524aba8dc451a0b4b8fac4ec64f20ddb6e545b758ee35c01191a8fba70e911d0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 434efd475592a7ad945f5c4574cab19891061a45e58107c108a56c2bdb1c661d
MD5 dd27bdcccd177ce9deeb15efb144b99c
BLAKE2b-256 509c0dabffa1fbb0bd7fb4dd5347871deaef52c6159a3c587fcd346dec2d2d70

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9c7918459c9f18a88b6c51a42861f4c0bab1dfed61512181dea0c040169023b
MD5 e735bef6ef362f819625122ffd3b8ae5
BLAKE2b-256 0d488af9a5ef6bb7421df438a763155a075e389bb32b87a0b33b4de5d177c822

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af3d0a3ad69dddda07b042a7fb59d98d11093bdbdaec6d77fb5ef8f829bab146
MD5 edc3abf5faacc0d77427e49d22543270
BLAKE2b-256 6aa093a4424d5cf1f07616ff3803fb15b9ff35a6cb943a5b7a2b96787d4e2f72

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 59eb1e6023f0d3d80ee1e91bd1d3f5fc504b4c58b3d19c1b9ab8f96cfc05a057
MD5 f620bd31f9c0fcabb9ec209d6a87b7de
BLAKE2b-256 f5a7b0d7c7d0b0dbe88febaaeb1ebf6a5cdc069ade903c77bb7742c04afaf55d

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b7fad257c9e1db88b3bfb5c325609511a1d409e0fb0511c2eaa88d5ac1731ef3
MD5 b27ba4d3e7554d497770b38f9640f64b
BLAKE2b-256 b2f92b7091687835966b4212ba7dbf277adef6c548fa7f1541d2a55baecb0a3e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 449e956beda80cf95dda57a88fba0158b3039b8e1cede772ad5878e38b788933
MD5 60da14d2a6bb302ef6645a6f0d2fd97b
BLAKE2b-256 52d2a360ec6cd9646afd00fa6e09556cd5eb3b4475c539b7e94536959d7b65af

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bdd847641eb19f86eb0b219fcdbbcf240145a6ee7a39a8c58ea303518013e50
MD5 930b90424de72957552297448dd3e740
BLAKE2b-256 08fa3c35ee7e9c4bb7cc01c3d4f06d07eb0ded6028303a1e04b9f5501e8310dc

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f36b77c422ef69ab7a1f20fcd4f53ba65b8bc96c423ae0db4a49d6bfbca7a0d7
MD5 c28040585ca70967ff098b790e7c119b
BLAKE2b-256 be51a79727ef84ed177e06cfe5596b87c7a9cac65c88c76ee080a449a6884e86

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c12452841d2b6ab4c0c811190b35db74aac44da815c4599c02346be4a1d323a
MD5 c0d9e6ea5165c0bd8ce970bf4921f4bd
BLAKE2b-256 36cd8ce3e7637f6c2501d287bc7f2640d55e03707beb8d072ae71cf56d69f7a3

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 917a6c0ac53873c870a36dd5902f636f723c72ffd6d1a05a560de3a7b70d9620
MD5 4d30558d7b982a7b734c9a6579dde1bf
BLAKE2b-256 0d74bae1f154f94cf9de76e86f8b5dbb998e6d39a49b9c7957ba2e991d1e5387

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f37101556e3d78c676f246db12b8e29a5001299d9b19c7ddad2ef7bb08b17963
MD5 382e75e31a0261e62797587cabde6da7
BLAKE2b-256 3cc7ead5ebbc71dcd21b1f2857f2ad45578b287e26017e45f29e4dba662f47e0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 78d925702ec744b5f9907f02bae48b51943debe66650a4c3c04fbe2d1bee471c
MD5 fe9c65798c96903eecf4030a7d9e39f4
BLAKE2b-256 2962e8df24588b1d99dfc56392af666cfcb3dbfefa8b6712ba09fdcb48fa5512

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d4c3caf4d948fbba6667085849dddb954edf34cb515c13997d628cff8ce4d0a1
MD5 6a44386d6dd0e31250d73efeb731df52
BLAKE2b-256 c78939e1b1cff3a1ff0c10f7191be8af07a0413f26cd5433e987f14452ebf2f1

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp39-cp39-win32.whl
  • Upload date:
  • Size: 52.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6e237f36a62ad4d8ce61e48c522b97747c689b6d91d2e194f9d158e9f72dcec7
MD5 e591336097d241aba2544b858553f374
BLAKE2b-256 12500d272a5bf3061aa80368227a6a915dcdad5ecb94687dc12dc78aff037ad4

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 047bcea88b47dcd22c4b034e69350ab9758fe1d20b6c89aff418d9ad002efad6
MD5 5006b903397126f32367021f578f65bb
BLAKE2b-256 ec4d0326516ebbf364bd83ed3a8d21aa102e0151f75200d8a652712af72b4356

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8d7a1b719cf141c030d83a6de89eccf6f38bc5190b6ca691ef031e17b38b6de
MD5 3bdd02ed4cd816509f74a8caaa4d9d8f
BLAKE2b-256 20554ae09561c01e60d8e9dac00282139ecf44a05059ed35cc7d3c702e2a7d83

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 92b017c751889b2e9c9985411e1b070bd67c1c2d8df869ad4a08e53fcd78b593
MD5 ea045c962937d93bcb349c0e946be2d0
BLAKE2b-256 122ab96fd1c7effb2b140727a530acfc089e727e3ce68a9dbcaf7ffc60966733

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18a91beb72aba62f1496f6a51c8dfa0dae3013306376a0fe092470257a843fc3
MD5 2a5d3ab2f239d8353bbe85e140b4ce6c
BLAKE2b-256 c13396243e3a8e10ef6c933d636092dc14cd3e923857caebba37b6ecc3d30449

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb30fd0d319389ec2d119ac01aeb20cd74c88bc1be2ec0fad5dfe14c662e95a2
MD5 4f389eff644e6b7b2d7b47c6b852f95f
BLAKE2b-256 5cec170df38c2a464d06ff7babf57b4ce6c5f3506540817cf2b0e4d4347fa7bd

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 397f5ffb4ab836cadb07f8e7aebe0e932c874f1a6e4220d8500b85a669e6f23a
MD5 88a1658b077f5357a2701133d1fde2c7
BLAKE2b-256 7b5f9bf1ce3a25e63e50e106d7e05655a79a44ef37d8dbc0d7058b83731cf2c5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4fde8d4747527b4ff6010b79fda41630637a358d09f87b937487707a018f188b
MD5 44c312571f9b89828ca17ea0923bbc26
BLAKE2b-256 8373874884534b2986227231d73dc82272ff45b406edf9f8048850ffcfe81c3a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp38-cp38-win32.whl
  • Upload date:
  • Size: 52.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a51f09db2ea90f604230780a6fe7536c6dd507225fd655173f7ef71919753015
MD5 fcf6f57ce3b909aaee8a16ebfc4421bb
BLAKE2b-256 b678f48eb490d7a1e295b1c82d2f4ee23194d6bbd2947402ee1df1f4dc9701d9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83c972af1038899b055b8b11375841f2199aa50db6fac07181a6a1923069eb92
MD5 c7518a33712c0ab3a33fbf22c5c5e73c
BLAKE2b-256 60feda40b2365bb4eb9fd15dcda9c9f69b0ace502e8c232305dfa4b5ac37efff

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a88dcc0536f8c9470d00e40132b094d94a45fd9fc43794d3da85cde028543f5
MD5 9ebca6f6b87f560b1c411528992b19c1
BLAKE2b-256 e031540d932a88e89d892313ef208c6819d00fd7cd8c794fa7bce26bf6848abd

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e1a8313ac7b5a951c6398b8341163e0a1b8dfd8872dc9dc5a75f32b5eba52597
MD5 9af06466953ecce692f3384206670d8a
BLAKE2b-256 e754d9607bbf14831df1c7838726bf880e8a9a53c2df4bae4e5e35120dffd25e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7548a83aebc5f6f8c10e2009d7a2a845ab438e1444a8d4cc6d5bc7160a09f7d0
MD5 75fa6c1832aa71a4ff88823f912b35cc
BLAKE2b-256 787cbe256e26ea4792163ad9627332ca467903197110d4d0574394b3aeba5879

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d884442b194778d36fb060df42b9faaf578b26fe34d3c427c488d178d89c414
MD5 1c8a6019b250b919c6457d7d498eb2c0
BLAKE2b-256 bc887662f3789185aaf081bd2b090347e22107aed4a3ab32c8cb704f0f20335a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 41b7defe96db244e2a05fa78acea65a506198405cfa96d719710c400afc410dc
MD5 96abcd630641c1fafd6c918014358492
BLAKE2b-256 c0e17e336c8a84edc6f468d5faa8b1572ceb317200e99b983728a5cc43a55f14

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cbc8e334bf1e35b6f8bbb2e0e6efecba938bf716ac27f516554dce37d414bf8f
MD5 30c6d67510f7eb2f02f7a71bd02e20d9
BLAKE2b-256 bb7c639bb5951288d51ca96322600eb4fc49d1c831276215a77295a54806df90

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d8a05a727dce4e1e50d3aff19ca5f2e3a2b175320a468a66a430ca4d2dc2ce8b
MD5 336f311ca5b458a88a99588401a1a1d3
BLAKE2b-256 979db220c5fad1e4299c3993c2256c19a3f6957023ea207f195466f19c66b62c

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efbbaa80b59d0645d618ea5bf599bda2d73b1ee3a9eae616ed17bd6fabd46736
MD5 04edf4e43bce8a1203695136d08d3a01
BLAKE2b-256 2c19d63ed50713d9b557a6fba23b43cb368e23eefa6a105d573cfe691ac93237

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0ed1a961e24fc5aef9d0612f904dc91b968e801ffd241df37814d9a90163c25
MD5 55f70e95558aa72ea2d260e7db0e7cb0
BLAKE2b-256 c42571fbc44fae9a34a72a20faa078a831b8f87e41a459d1be3a0b2850c40b34

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d6aac855bef9382c1f24b761c3dca9d75a7fc0539a3a136a858c67100a4ae49
MD5 c92b2061b534bed62434e57d0bfcfd63
BLAKE2b-256 773a01381a9df5b74bc9fac6fcf8775cc36f4c63271165d81c53007d314e6a46

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ddca669e1844d71b1267fcd21e2477dfed184fa8945887bcebc418458443910
MD5 6922260282c46b05eb15df5406a09863
BLAKE2b-256 377401c500960bd73653502b07529bbb82003474360657a0767e8ceca40a7bc5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 404a837ba86df60a1b5fdabef7847df69e7079285794fdc683ac3d377884e953
MD5 78994075c9134719efebe39e7444f52b
BLAKE2b-256 b8016af52b3aebd70248cbabe5be73b6f9c9d6e72d6dc22dd52f33f9d94d3097

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyLBFGS-0.2.0.16-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 473fc77f9f28d128ecb5b0d3ac2b03f170e2fdf69ff1faaf818df9ae78afc228
MD5 cf4fccce0a7a9f89e04250f10ac15856
BLAKE2b-256 73571c7cf3905ac9ec1df5cf3d28040339f400356e61329cfb91b3fd5d328be2

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbc9729ed6169d310dfd390e354cfc087694d0e46977dc51c2d289ca3a137c0b
MD5 cccf7057ccad93e5137f7da5883f439f
BLAKE2b-256 fdf1695baf746ff2092dcdaab5cf38243cb31bb241bedb8d383f61352fabf8db

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 edf20cd0d0426a19c18823b9d196e03a28f3f7043d40dc494c599dc7fbc08f40
MD5 55e9661bb0b6cc1607c8a048e10fe03c
BLAKE2b-256 40df3e90c3d372c054404d46b0bcd4a06b12139fc9ad3e3fbb003b0be431bcf7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 edcc8e428895336d1eb598281a73052db62ca799ae7abecc7db4290b10e96c97
MD5 0afc5d3e0410e3d64e26d9a1016c07c4
BLAKE2b-256 6e06dcb35b5106b3addc3023b94768111ec672cc558c85acb0bfdc62f39e8e2f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.16-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.16-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d326630b6840c1dfdd46a5287deab7f8dc0d1a120346c6d544c27d30ed2e11d3
MD5 e67534cccbb8dbba37c1bad049ae06bc
BLAKE2b-256 3581004c1089190f5c834dd58647545d25ad501c05ebf76bd8e9017f9a298c11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page