Skip to main content

Jonathan S. Smith. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5): 443-454

Project description

PyLMD

Method of decomposing signal into Product Functions

This project implements the paper:

Jonathan S. Smith. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5):443-454

How to install?

pip install PyLMD

requirements:

  1. numpy
  2. scipy

Examples

>>> import numpy as np
>>> from PyLMD import LMD
>>> x = np.linspace(0, 100, 101)
>>> y = 2 / 3 * np.sin(x * 30) + 2 / 3 * np.sin(x * 17.5) + 4 / 5 * np.cos(x * 2)
>>> lmd = LMD()
>>> PFs, resdue = lmd.lmd(y)
>>> PFs.shape
(6, 101)

Example

Parameters

  • INCLUDE_ENDPOINTS : bool, (default: True)

    Whether to treat the endpoint of the signal as a pseudo-extreme point

  • max_smooth_iteration : int, (default: 12)

    Maximum number of iterations of moving average algorithm.

  • max_envelope_iteration : int, (default: 200)

    Maximum number of iterations when separating local envelope signals.

  • envelope_epsilon : float, (default: 0.01)

    Terminate processing when obtaining pure FM signal.

  • convergence_epsilon : float, (default: 0.01)

    Terminate processing when modulation signal converges.

  • max_num_pf : int, (default: 8)

    The maximum number of PFs generated.

Return

  • PFs : numpy array

    The decompose functions arrange is arranged from high frequency to low frequency.

  • residue : numpy array

    residual component

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

License

PyLMD is a free Open Source software released under the MIT license.

Lin, Q., 2020. Python Implementation Of Local Mean Decomposition Algorithm. (https://github.com/shownlin/PyLMD)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLMD-1.0.4.tar.gz (177.7 kB view details)

Uploaded Source

Built Distribution

PyLMD-1.0.4-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file PyLMD-1.0.4.tar.gz.

File metadata

  • Download URL: PyLMD-1.0.4.tar.gz
  • Upload date:
  • Size: 177.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for PyLMD-1.0.4.tar.gz
Algorithm Hash digest
SHA256 26292ccc1fd80c354018beab8c3d1b180e74a0f8f3e599c0975daf4b9f860377
MD5 c5c8f745361e8c5d283c84fee9582d1c
BLAKE2b-256 179c409fa0bd9d06f969edf7342a5946cfe455c02bd80bdd154831418d3df47b

See more details on using hashes here.

File details

Details for the file PyLMD-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: PyLMD-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for PyLMD-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8ef67e09ae7b017dd9568b93fac177a23655091c1150814b7d1dfabdaa74a9e2
MD5 e2396dc788c273d4cdfd2a58333b17d9
BLAKE2b-256 a32495acd9229b4ef6482da1ed9b2cf7a80ce84ec1879e7049eda12f47a3fb86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page