Skip to main content

A simple implement for MCTS algorithm.

Project description

PyMCT

This is a simple implement for Manto Carlo Tree Search algorithm.

Install

pip install --upgrade PyMCT

Example

This is a example for searching a randomly generated tree, each transcation to a new state is given with random reward.

Import moudles:

from random import randint
from PyMCT.MCT import MCTNode, MCTS, State

create the test case:

class Test:
    _root:MCTNode
    _MCTS:MCTS
    
    def __init__(self, root_state:int, c:int=2, max_iter:int=10):       
        root_state = State(root_state)
        self._root = MCTNode(state=root_state)
        #Set the serach with max iteration and max tree heights
        self._MCTS = MCTS(self.root,c=c,max_iter=max_iter, max_height=2, debug=True)
        
    #Always return a random reward. Note that the function must take one MCTNode as argument, and return a value.
    def reward_func(slef, node:MCTNode):
        return randint(0, 10)
    
    #Randomly expand the tree with new node. Note that the function must take one MCTNode as argument, and return a list of new states.
    def discover_func(self, node:MCTNode):
        new_states = list()
        for i in range(randint(1,10)):
            new_states.append(State(i))
        return new_states

    def run(self):
        #Pass in the reward and discover function, start the algorithm!
        self.MCTS.iterate(self.reward_func, self.discover_func)
        
        #Find the optimal path.
        self.MCTS.find_optimal_path()
        
        #Display the tree, Note that if no tag is given to MCTNode, a random tag will be generated and display here.
        self.MCTS.render_tree()
        
        #Print the oprimal path. This is the list of MCTNodes.
        print(self.MCTS.optimal_path)
    
    @property
    def root(self):
        return self._root
    
    @property
    def MCTS(self):
        return self._MCTS

run the test:

if __name__ == '__main__':
    test = Test(0)
    test.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMCT-1.1.5.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

PyMCT-1.1.5-py3-none-any.whl (17.5 kB view details)

Uploaded Python 3

File details

Details for the file PyMCT-1.1.5.tar.gz.

File metadata

  • Download URL: PyMCT-1.1.5.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for PyMCT-1.1.5.tar.gz
Algorithm Hash digest
SHA256 7daea63caeea6f656461f269e4bbe5fc6ed3fbc696316cc7a2a9a6a2691dd6a2
MD5 188612dbdc781d6e4c5e0799ced14428
BLAKE2b-256 fddb20f3c3a25b487e298965b33d2da184891e43cb7d1745ff7528a43f59b345

See more details on using hashes here.

File details

Details for the file PyMCT-1.1.5-py3-none-any.whl.

File metadata

  • Download URL: PyMCT-1.1.5-py3-none-any.whl
  • Upload date:
  • Size: 17.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for PyMCT-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b0def4fc8c6f3f92f1af7422156c5dc867bf6c6dbddd8dda5aeb103c46abfc92
MD5 600604f36029eab0651de983d5fd1b40
BLAKE2b-256 6805baa497f6ef91a74593ae02dc8830b927fe94c821502e0572a7d53d6536d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page