Skip to main content

A simple implement for MCTS algorithm.

Project description

PyMCT

This is a simple implement for Manto Carlo Tree Search algorithm.

Install

pip install --upgrade PyMCT

Example

This is a example for searching a randomly generated tree, each transcation to a new state is given with random reward.

Import moudles:

from random import randint
from PyMCT.MCT import MCTNode, MCTS, State

create the test case:

class Test:
    _root:MCTNode
    _MCTS:MCTS
    
    def __init__(self, root_state:int, c:int=2, max_iter:int=10):       
        root_state = State(root_state)
        self._root = MCTNode(state=root_state)
        #Set the serach with max iteration and max tree heights
        self._MCTS = MCTS(self.root,c=c,max_iter=max_iter, max_height=2, debug=True)
        
    #Always return a random reward. Note that the function must take one MCTNode as argument, and return a value.
    def reward_func(slef, node:MCTNode):
        return randint(0, 10)
    
    #Randomly expand the tree with new node. Note that the function must take one MCTNode as argument, and return a list of new states.
    def discover_func(self, node:MCTNode):
        new_states = list()
        for i in range(randint(1,10)):
            new_states.append(State(i))
        return new_states

    def run(self):
        #Pass in the reward and discover function, start the algorithm!
        self.MCTS.iterate(self.reward_func, self.discover_func)
        
        #Find the optimal path.
        self.MCTS.find_optimal_path()
        
        #Display the tree, Note that if no tag is given to MCTNode, a random tag will be generated and display here.
        self.MCTS.render_tree()
        
        #Print the oprimal path. This is the list of MCTNodes.
        print(self.MCTS.optimal_path)
    
    @property
    def root(self):
        return self._root
    
    @property
    def MCTS(self):
        return self._MCTS

run the test:

if __name__ == '__main__':
    test = Test(0)
    test.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMCT-1.1.7.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

PyMCT-1.1.7-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file PyMCT-1.1.7.tar.gz.

File metadata

  • Download URL: PyMCT-1.1.7.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for PyMCT-1.1.7.tar.gz
Algorithm Hash digest
SHA256 17b68ca06c067a032f26672e7801218e49586b4b9c712d18d6877194e4b367ce
MD5 f9bc3135c5d3264b844cd00eedb1120c
BLAKE2b-256 bb346517f96fffa58f452038be1b2bdc66e7f9e19fe2337469a7f8ff77b7c5d5

See more details on using hashes here.

File details

Details for the file PyMCT-1.1.7-py3-none-any.whl.

File metadata

  • Download URL: PyMCT-1.1.7-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for PyMCT-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 c4cf917c426c04ed3f434cc20c9a671229456ca66b7399305b748ef7559b4715
MD5 a57d1465c60f8039353f3d714d81e4b5
BLAKE2b-256 ca9075deec71c1e070fbcebebfc90b339542cb008ebf324f1c774c598abde5c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page