Skip to main content

A library for processing and interpreting DNA high-resolution melt and amplification curves for the meningoencephalitis panel.

Project description

<img src= "https://github.com/PyPCR/PyMLRS/blob/main/PyMLRS.png?raw=true" alt = "PyMLRS Logo">



PyMLRS

A Python library for processing and interpreting DNA High-Resolution Melt and Amplification Curves for the Meningoencephalitis Panel

InstallationFeaturesDocumentationHelp

PyMLRS

PyMLRS primarily focuses on feature extraction and interpreting results from parsed data. here the first step is to parses files into the .rex format, extracting essential information such as HRM (High Resolution Melting) data, cycle threshold (CT) values, and sample details. It facilitates feature extraction from HRM data by converting it into melt curves, and for parsed CT data, it identifies take-off points crucial for determining the severity of affected pathogens. PyMLRS integrates these features to interpret results and generate comprehensive reports for respective identifiers.

Installing with PIP

python -m pip install PyMLRS

or

pip3 install PyMLRS

Classifiers

Development Status5 - Production/Stable
Intened AudienceHealthcare
LicenseOSI Approved :: MIT License
Operating SystemMicrosoft :: Windows :: Windows 10
Programming LanguagePython 3

Features

  1. Rextractor
    1. Extract the data from Rotor Gene Experiment(.rex) files.
      1. High Resolution Melt (HRM)
      2. Amplification Curve - Cycle Time (CT)
    2. Processing Data
      1. Filter Only MEP Pathogens
      2. Separate by patients
  2. MEP panel
    1. Feature Extraction
      1. Target – Pathogen Name
      2. Temperature (Peak of the Melt Curve)
      3. Width
      4. Prominence
      5. Take of Point
      6. Take down Point
      7. Area Under the curve
    2. Interactive Visulization.
      1. High Resolution Melt
      2. Melt Curve
      3. Amplification Curve
    3. Result
      1. Interpreting the results of the pathogens
      2. Generate report for test Results

Input Data format

The input file for the library is the run file from the Rotor-Gene machine, which is in the format of a Rotor-Gene Experiment (.rex) file, and we can directly provide the .rex file without any preprocessing.

Documentation

Importing Library

from PyMLRS.Rextractor import rex_reader
from PyMLRS.Mep_panel import Mep_diagnoser

PyMLRS.Rextractor.rex_reader()

PyMLRS.Rextractor.rex_reader(path = None)

Parameters:

path : Rotor Gene Experiment file path (.rex)

Returns:

A dictionary containing various patient ID for each separate patients: class 'dict_keys'

A dictionary containing various dataframes (HRM) for respective patient ID's: class 'dict_keys'

A dictionary containing various dataframes (CT) for respective patient ID's: class 'dict_keys'


Example

from PyMLRS.Rextractor import rex_reader
Patient_ids,raw_hrm,raw_ct = rex_reader("your .rex file path")

PyMLRS.Mep_panel.Mep_diagnoser

md = Mep_diagnoser()

hrm_data = md.transform_hrm(dataframe: Any,figure: bool = False)
ct_data = md.transform_ct(dataframe: Any,figure: bool = False)
melt = md.hrm_to_melt(figure: bool = False)
hrm_features = md.hrm_feature_extraction()
ct_values = md.ct_value()
md.Tm_threshold()
result = md.predict_result()
report = md.report( output_fie_path: Any,patient_id: Any)

Function Documentation

transform_hrm

Parameters:

  • dataframe: HRM data obtained from rex_reader().
  • figure (optional): Boolean flag indicating whether to generate an HRM graph.

Returns:

  • Processed HRM data.
  • If figure is True, an HRM graph is also returned.

transform_ct

Parameters:

  • dataframe: CT data acquired from rex_reader().
  • figure (optional): Boolean flag to specify if a CT graph should be produced.

Returns:

  • Processed CT data.
  • If figure is True, a CT graph is included in the output.

hrm_to_melt

Parameters:

  • figure (optional): Boolean flag for generating a melt graph.

Returns:

  • Melted data.
  • If figure is True, a melt graph is also provided.

hrm_feature_extraction

No Parameters Needed

Returns:

  • HRM features extracted from the data.

ct_value

No Parameters Needed

Returns:

  • CT values derived from the data.

predict_result

No Parameters Needed

Returns:

  • Predicted result based on the processed data.

report

Parameters:

  • output_file_path: Path to save the generated report.
  • patient_id: Identifier for the patient.

Returns:

  • Generated report based on the analysis.

Sample code Snippet for interpreting individual result

from PyMLRS.Rextractor import rex_reader
from PyMLRS.Mep_panel import Mep_diagnoser

# File extraction from the rex file
patient_id,hrm,ct = rex_reader("Your .rex file path")
print(patient_id)
# Create Object
md = Mep_diagnoser()

# Interpreting the results by providing patient ID manually
hrm_data = md.transform_hrm(hrm[id])
ct_data = md.transform_ct(ct[id])
melt = md.hrm_to_melt(figure = False)
hrm_features = md.hrm_feature_extraction()
ct_values = md.ct_value()
result = md.predict_result()
report = md.report( output_fie_path=f"{id}.pdf",patient_id=id)

Sample code Snippet for interpreting all individual result

from PyMLRS.Rextractor import rex_reader
from PyMLRS.Mep_panel import Mep_diagnoser

# File extraction from the rex file
patient_id,hrm,ct = rex_reader("Your .rex file path")

# Interpreting the results
for id in patient_id:
    md = Mep_diagnoser()
    hrm_data = md.transform_hrm(hrm[id])
    ct_data = md.transform_ct(ct[id])
    melt = md.hrm_to_melt(figure = False)
    hrm_features = md.hrm_feature_extraction()
    ct_values = md.ct_value()
    result = md.predict_result()
    report = md.report( output_fie_path=f"{id}.pdf",patient_id=id)

Getting Help

If you need to get in touch with the team, please contact through email address:
chandruganeshan24@gmail.com
vikramsekar2305@gmail.com

Developers

The developer of this Software are M.Sc Data Analytics Students in Department of Computer Application at Bharathiar University

Chandru G
Chandru Ganeshan
Vikram S
Vikram Sekar

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymlrs-0.0.3.tar.gz (632.4 kB view details)

Uploaded Source

Built Distribution

PyMLRS-0.0.3-py3-none-any.whl (656.5 kB view details)

Uploaded Python 3

File details

Details for the file pymlrs-0.0.3.tar.gz.

File metadata

  • Download URL: pymlrs-0.0.3.tar.gz
  • Upload date:
  • Size: 632.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for pymlrs-0.0.3.tar.gz
Algorithm Hash digest
SHA256 4d72191a62db854f3734e758f22a54a9161378a7e102db4d2019c71d2fc93c7c
MD5 4ca2e4e1f5f86497b34e9b314a06d3b3
BLAKE2b-256 975f685ee07b2755164c62badeea4f521b5597722fcf4b5393f252acce08b101

See more details on using hashes here.

File details

Details for the file PyMLRS-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: PyMLRS-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 656.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for PyMLRS-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ab857b127b9233296d67b6f86a4d5e4a10af26a001de7e3ba9022858d356742b
MD5 9b1102efe77ef91fbb27dade2922e44e
BLAKE2b-256 064c375f9b04bd1939d9987d934e8af99223fec4430b1c7e3516862b4531e6bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page