Skip to main content

A mincut/maxflow package for Python

Project description

PyMaxflow is a Python library for graph construction and maxflow computation (commonly known as graph cuts). The core of this library is the C++ implementation by Vladimir Kolmogorov, which can be downloaded from his homepage. Besides the wrapper to the C++ library, PyMaxflow offers

  • NumPy integration,

  • methods for the construction of common graph layouts in computer vision and graphics,

  • implementation of algorithms for fast energy minimization which use the maxflow method: the alpha-beta-swap and the alpha-expansion.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMaxflow-1.3.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

PyMaxflow-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (134.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (137.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (139.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp311-cp311-win_amd64.whl (85.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

PyMaxflow-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl (114.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyMaxflow-1.3.0-cp310-cp310-win_amd64.whl (86.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyMaxflow-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (798.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (118.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyMaxflow-1.3.0-cp39-cp39-win_amd64.whl (88.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyMaxflow-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (811.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (118.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMaxflow-1.3.0-cp38-cp38-win_amd64.whl (88.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyMaxflow-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (117.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMaxflow-1.3.0-cp37-cp37m-win_amd64.whl (86.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyMaxflow-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (784.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyMaxflow-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (116.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMaxflow-1.3.0.tar.gz.

File metadata

  • Download URL: PyMaxflow-1.3.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for PyMaxflow-1.3.0.tar.gz
Algorithm Hash digest
SHA256 94d7bc9c0c7b5a8bfe8cca87bcce4a4aa3bd749e03c5c5bcf3fb2a7a86e7af90
MD5 5d98a91ba66ddc3b3467ab8998d6dfbf
BLAKE2b-256 c27903cff794dad40abe2b4952e1f441653bc9a2c7f0179d08b6c0809651bc9a

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b311da3ec4dbf11a26204911d70c8fde80458789fff59107783250bc5a7026a8
MD5 bd2e210be272133e05ff9d7221ef3d07
BLAKE2b-256 0556c23f58e70b102e7aff004fa11d4de5b97bee0129a3c558f3154ef228310e

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ef254eb611fd4b88b6b1e63b223608958164043c134bfc7cff1723c8adbe8d9
MD5 e8949c8c06ca5a15347f1b2f375d5b64
BLAKE2b-256 31585d29a948a88056991251931082a5ae8ac6ead966f5fe81fe9965514094fe

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96590d84b0915ab79c75631dd3b2c77b2f84ac0c1f9a42c03d6102ac226a44e6
MD5 2642c28bbbd340dbb6854e92c79877c1
BLAKE2b-256 5685b0b46b46598b2fece7e773c106b3c61d042f2d3f44ec57df5bd2850cb1c8

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1ae521170555505a365dcdc8afc7923ae3a210ec92405320a142b68dfd05c90c
MD5 b74df876ecac5fa7d931957059b534c7
BLAKE2b-256 456d10282fa28ad43e7baf7dcc9138ec980c1ed108cc9eaa4d58b9cd0346870a

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6beaa308abeef595efff684b00e003172dd83281f84cd27f1ae6695ebcdd9cd5
MD5 b92dc74fd49e2d15d5e8996b388ee652
BLAKE2b-256 7c8faed4149bba83a649d4aa176486f836feda1c402ba93939cb381b29232641

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54a85c5c209e0076bc588aa71db4e0adc5101b1c482a3c7d4eb8ee40713b6b6b
MD5 904cd2b4d1b42d26d927a2372f443eca
BLAKE2b-256 c5b373da996efa374e1840a6ba6a45b04517539a98495f3d4cd9fe1dc32ecd94

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 78d48c82f0f7593a60ed7d5cf09a7e8ee2d9330f956e5a93159e745fecc2d247
MD5 8485633dc9b25727e3a1b1160fa6ddae
BLAKE2b-256 1dc1ec5c7fb77d0b0b92e3e60a62b4d25a9e26ef8b638637e798db9a41c2936a

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4838a75031c3ab4537e15d480898ac60bc8ed4b89c6a7a333e3473f076787c65
MD5 39f5208c25d8518739997cecb0469c6d
BLAKE2b-256 96770beb97546d0bfaccf9892f0af90283e548c5862481a131e90515a975c966

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7064e49edb13738d3b8107ed4da4174058310a23029ba2c260c14ee873d24e15
MD5 686018d663b9368af893bb4739e97a08
BLAKE2b-256 6e84b7938e69c1600b6ba90f61c96d08f4027489f70783926f18efbc207d9b7f

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMaxflow-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for PyMaxflow-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9d9d4655b7b59266c27fe9076fe1656e1b0e3f92a2c3258ee09c39825cd7472e
MD5 981133f46aa235a7b2ea8b161f99ed15
BLAKE2b-256 dbbe5ff193e6403a12e4ceaf8186195bdeda0718a8ae1680f45ad0eabf4f10cc

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8003f8f1bbf01ae4c23b4bb18cdacaa4fd897a309586e762bc80a0028231c498
MD5 430e5a2a17b0abf8f7b0ede93cfbe18c
BLAKE2b-256 1672ef51b3c8ac3f06d06fa3701bc06b5fb1bb4b5f0cd84144ba48d71087d4ba

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e92e949e56b5cc004fd53790e037bbe682c39f97de5151aea7845cc2d7fa20a
MD5 3fdc58feab7727483334cbada47d5591
BLAKE2b-256 ddec7a06f68afd01d367a56854c3724a7ade090bb2fe013fc2fcf1eff321bbe3

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMaxflow-1.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 88.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for PyMaxflow-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 550cc1de17f460b22c0dbff6198c0bfd2169da2ddf258ad348341a9069770681
MD5 814f68dbcc0a5acd9e719661c69c8813
BLAKE2b-256 968380663790b5e97677cd7e1f2f547fb41e1a1671f76fba2c1e208402644c89

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47f8d5d09d4f22e4dc42a2a8315a2b6a5a68e58063d288b1e0dc4a4a5bd840ff
MD5 dda3d768b21a791aa782763ce3096f5e
BLAKE2b-256 f79d531bac1bee534f2069174a2be859c9b6ba37a519b380a0c9069baece3ffd

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eab3e23165552d0a9aeb591f6a7be76f4f70ae1e34925b2ecd38e4bf0b5770f2
MD5 fe175aabadcbce5b6815577f0e9e4122
BLAKE2b-256 bf016ebc380d37b5a281f01bd6c11ac139876c864a83f406d18c2ba59a9797e1

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMaxflow-1.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for PyMaxflow-1.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 468e37b561b02767721a984134d50c131d140ea5d2c4ea29e03bad5e87fc70e2
MD5 2a80f3138d08f66d3fd0063d058c139b
BLAKE2b-256 7244294fd50acf7984d408f4f87c24299527e9b3338d26c6a82348615fdf8333

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bf042c187d7bef246ce751de1cb74b97f012bbd5ccfaf2c29290625269e90fe
MD5 8cc091451286a0db1faf1c94d6fc9236
BLAKE2b-256 38487d724dead2a4553164582894610fce617de09aa69c90a2fa1c6687c5f392

See more details on using hashes here.

File details

Details for the file PyMaxflow-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMaxflow-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae8b1a3c6bdb01ba6ab31b139600cb321bc5af0ba18dda7e0c49a30f4dc4ff1b
MD5 b2c0fbb09b2d2cf4f2ceb746a0ae955b
BLAKE2b-256 88859948d3c6e050e50e29767290ef2036ecef10b5b40c6a21623b5dedebd33e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page