Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.7.6.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.7.6-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.7.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.6-cp310-cp310-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.7.6-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.7.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.6-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.7.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.6-cp37-cp37m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.7.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.6-cp36-cp36m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file PyMca5-5.7.6.tar.gz.

File metadata

  • Download URL: PyMca5-5.7.6.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6.tar.gz
Algorithm Hash digest
SHA256 bc4fded313d2f51a2b43fb3a55a0809a22320748d633d2e631718f3ac444e5db
MD5 140523fd25c8f7602257e415e53ac41e
BLAKE2b-256 a395b9a4afbe380d1efccaae3d1f4240dce45c3e5da70a3ea30e65559afaa864

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 632590dace44cf35ef97e78a070b40083c41a0f5f8e6e46262ea2c74d62b4dea
MD5 3267fa52ade7692180d4bffae049d929
BLAKE2b-256 7aa2d2c771fb2f0b7f612a52de0e7f2831c01d23c0a96e5d9c53e412f3a5db98

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6d0db8b5c68217768a016856720cbaa316febf140df02f0da5088a3fa026c03e
MD5 46fe64d3d60799c0b153c19e73e5cff9
BLAKE2b-256 4847b50e106afba169cc120c92ace451df4cc0e9bd36270d8a61bdfb6a94af41

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 53eb91267c5b0d336bbb23877d252ef139dff04fcbed6a6e9df78a84eadd1b03
MD5 2fc3f6e13d55dbadbb973d13fef98b35
BLAKE2b-256 201c6979760dc71698dc436da7e67effadb23ea753e400a37c7d4f6234a5c441

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e2964dde1fc3b13c2c2b3ee4b93f366200e41369c7836511e1d9ce07b72557e8
MD5 d27115c23b1b9a2c57b27ac922e08721
BLAKE2b-256 084a2c52a3ad2c6ca359dd8b27221270d46f6c00c139d391da657f99897bf4b7

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d0a845a6f603c27a271315007d554a8a0b2f53d45f8b6be56380d3337c8fcbbd
MD5 a543d97809d001c63c9a69ae4b2d68b2
BLAKE2b-256 e76ffc362ec6cb2f85268f24fbe3407b8bf04e12a2e3ea17ce9b488e4d9ec57b

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f704477e9bc45435a8519b2cffe53a89fb3693ab8f2d077edcaa57f52fcd7b59
MD5 aad838dfe4e3e03b703117e0342e03a7
BLAKE2b-256 01b154fa1cba17a097d5af97a8139d86aaa6e517a5feac662eecef2e43d56cc7

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f725c6943f58ca8a98b8ad817130bc0a77234f0650f787e552627dc4ed0e91fe
MD5 1db13004b0bc63066f3d2721544ab8c2
BLAKE2b-256 7cd83d299896e2dd26988225945a2ac62875044a142b984c3504fd0bc90606f4

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 43fb6cf43ac9a27c612d50a39705dbdb9db6170c23860c8bc6bf7a653fdf47be
MD5 9f59cd730067efb09593298a67996a4f
BLAKE2b-256 8841fedfe27ddd8210817810704bf89b04ee2a2348452af638e399d760d74539

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ad3a78fcf4fc00d2e2e743d8855ebb4fcd8014d63d5b7ce6bcedce264ea09c53
MD5 34ac1ef1e4d9fef9066deec3d39cb775
BLAKE2b-256 3cbbddefce083dee1a8bdc25f0ef0b2b8068442fd70a01e7a3f7b62eac1be3e2

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for PyMca5-5.7.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c7abca0c21a1a3eca690a2cc3f8d34b79f886cf325e3cf94e4e532a363f3dca5
MD5 95d0eb067eeaaa08c6c67c58167f1293
BLAKE2b-256 708154ff8bae348de705e0a8670c7d4313a4a9f1b0d1b877c3601f735b1ac387

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page