Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.8.3.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.8.3-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.8.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.3-cp311-cp311-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.3-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.8.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.3-cp310-cp310-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.3-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.8.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.3-cp39-cp39-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.8.3-cp39-cp39-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.3-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.8.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.3-cp38-cp38-macosx_11_0_universal2.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.8.3-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.8.3-cp37-cp37m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.8.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.3-cp37-cp37m-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMca5-5.8.3.tar.gz.

File metadata

  • Download URL: PyMca5-5.8.3.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3.tar.gz
Algorithm Hash digest
SHA256 b3cc8657a2fdfc5e798936deb915b978569ff64b06271976745638811cf36c7d
MD5 33cd8e22158679037f9ef3b39fee69c7
BLAKE2b-256 1eaeb4acc28b3f1f9aadd8bb9ae5ab1a373c1459a900d9b56bfe4428d70b8d5d

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd10ac440e842c97acfb98b76bab891ec91c735e3364f23cd9f96a91194d663d
MD5 64feeac5795be5cd3182b8865daa8b2d
BLAKE2b-256 4ce0a494ffa8f222b292a0af3034882dcbbc29357c5984d864603287e3d9ab5e

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9fb7bfe41c854166cee4be69fe603e4736cfde16b830d7104740464c1f03f42b
MD5 783b86bc57693f74a5b26aa719c7c336
BLAKE2b-256 5248ca9c09ceeaeab35ec368004d5d8576b132aa245bcb4b6c6dc5ed73994b42

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9ef6aaf8a9012adb258e506de9bef3b0d7744ffcc11149dd05a9288eb9ecea31
MD5 865320b329176bbf8cd5d2398e63623b
BLAKE2b-256 e9f3d32bf7bdf1339b550ec26893d8bd9c06a5713dbbf7a54e9c47913e94d7af

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 91bed55fb599ae2f7be82fcee66b80acd19c1132d8ec6cbb4c993b3e50366f1d
MD5 7e1dd1a9417692cac8bf5df2def4a724
BLAKE2b-256 8a29cd210f524d690863fafcedf0da388bace2e0454141d9c66c19fcfb0f2162

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 61a55a3f4ee0daf4ed02164d3bb7798f67895023009b3189d1311e1a56068876
MD5 72b2d93f699dae4077eef2dddf861f01
BLAKE2b-256 ae3315e4ab6986b0ae9d38f109d1a86435a0fd5c4e65e6cc6936afff3bb36eae

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c4b74f684adf41c1cf7ac645b9b31dc5154fd3def229852e3733eacf89d8ac0b
MD5 f3df3966fd4592173f67030b1bcf8010
BLAKE2b-256 0e8e83a4ac13b392523ecaaa415ec3036fcee1f2fb13727f492518d060ef9a69

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 662d6b7071246841f23a0d6fadc59dcc88f580fe4954d7b04830917734c21088
MD5 07af142ad5c261b83a3a121a10cdc0fb
BLAKE2b-256 9500ec501378d4d3997fcf0364dd425d8b635aeeb45212c675055139b545ca8c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bb9c7d7b64a746e1030019fffa02471c3a73b8f321458c5ba7fd4cc3d7ef0e31
MD5 d927551adce49be795e22b82feef3720
BLAKE2b-256 b5857677994d431ff50e6b55ab6b1e2fc1d6aafec913759474a5a1863291bd03

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 717da72afb26465e81226326fcc65dbeb65c233fcfef1ccc85d26874c43fac7d
MD5 120a80f4f11a64d294a4fa44c95de24d
BLAKE2b-256 bad6ad44dd85f4e1a99e62176d490449ab11929a6da8f258944a2ac2026459a1

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5782128851b16219f7ecde547a42ad59d2aea1d2bbc134da777cd147ff829f28
MD5 394ffe670a293884e31bfeafb0e06529
BLAKE2b-256 fd824081283dc7d87c7958aec27551fb311110345df19980aff28d076441e7b0

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b4976f29c80f3420f81ae629dd05d0f89dadd52426572c950353f7fb8235e254
MD5 7940a21f12ff4253276ea28d8c987bd1
BLAKE2b-256 8be33002c453c63268697d0a2a08b8dfe2d88150e17b44963f68dd166f26423c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 26a3feb233b44a1c3e3cf0a0e60f89c64bccb17e67c3ed34d5cb24c6eeff5697
MD5 10b7590dace073c8b4e2354cc996be2b
BLAKE2b-256 0a5d6d815d65fe23a9ebda1b1fe293373629e6d709355be67cf2f91277666668

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 bd1534ca48df353324ba64b61b7638ca44ed2bed588b6869633a6b1bc32d049b
MD5 ac1e4f8455b3fdc28f58b29e25d3b2e7
BLAKE2b-256 bb5648c2957214045e6bf1b1c75939bf6768b13d99083d59cad8e5c873db6d47

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3118e71700551e8e5e01125f19cb17decde12957ddc4ed10bc1fed852480273d
MD5 03e8bc4b702b583ec6b0ed4413763b9e
BLAKE2b-256 61e62a35e29a82adb2048949ccb28f003e8080140e5b05526184833d55b5f0ac

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f5680706632e6b39e8dc66b34c6e8f567dff2beaa16d21d7c2000a89f4a49632
MD5 4ca4e4f353a9d0de740dbe7faf852bb4
BLAKE2b-256 25d0d5c03ea0dc507518739afe32e5d5d368d77c19f79224976b3ef5385a7d1e

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fd5db37a62ca7c9cfc30abf8faa9fdee1268430a59951d63de9653cb4b21c1bf
MD5 bee0402de097c479fce83cd1cff428cf
BLAKE2b-256 0d35de3077ecfee15ba9dd291084096f8ac289aad9fc0ff11d317252d221713a

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 463bb8126450e4cc335920c47513a51ad63b71325126fb55c77ee447ebe4e830
MD5 a0ec2d62ec388ab5c3dd5c3ee601d6fe
BLAKE2b-256 74bd23ef873ed9575f32ca3e2d9de7413a65730aae09a0e5bf849bd92eb9e5d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page