Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.8.4.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.8.4-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.4-cp311-cp311-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.4-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.4-cp310-cp310-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.4-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.4-cp39-cp39-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.8.4-cp39-cp39-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.4-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.4-cp38-cp38-macosx_11_0_universal2.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.8.4-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.8.4-cp37-cp37m-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.4-cp37-cp37m-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMca5-5.8.4.tar.gz.

File metadata

  • Download URL: PyMca5-5.8.4.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4.tar.gz
Algorithm Hash digest
SHA256 a03c751f66ab5229f72405306a5ec92dafb518a40ebb45a73e691ab649d37412
MD5 613b1ca84347adc9ebfc49092cf3e91a
BLAKE2b-256 3bf0bea32580bccf1af40593baf93835062d47c4b0a658e1991010494e737832

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c55b7298a865005e6be60b9b2909ca5895179b96f1fec88144d0312273935230
MD5 e1bd9fdfd5b0107a2d5d0d4b53737f49
BLAKE2b-256 33b03f70e5ce2cdb82a3cc0cc038c5d52cac043c197368fd264e69870539fa80

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 40bf4b2ee93b3c78fb748e16d9efde7ceb6ed82bc66c56c05063015b77872b0a
MD5 231be5034c8418de89c84813fd2ca82d
BLAKE2b-256 7479e549ec57623c2be80bb286e14fa4b32fde2761a3b1ed275109a058d6d52c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ce46a14984f26e90a17953ce0647c4433cd84030aa3e8a0b89bed937208f15d9
MD5 ef0c0d500d053799804decf3099f8659
BLAKE2b-256 3c68991c31ed33156dec46af6ee479956fde2d36e722173845f5cc77a39d4e2a

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 585c49994369f47bc6e0901b9473d9bf64b761874068e2b5e73339c34b38f6f5
MD5 990a21ed3d0a6543bf4a56167c92571c
BLAKE2b-256 65edbe270be91e9adb15ca3a77a1babba3208c4003f0806b2e2e003fd6628004

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ceeb2408c473f8bbb9b8e2fc0518ac999426ad2160d80d2e55c88135d6b7f246
MD5 26279f74f6dfc1d4c89562b99c0e0637
BLAKE2b-256 e9000376146a742b0653f7b942a2854e215458144af8a49d56c2d30f22cc4369

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f857e7d984ec1faaafc479c072456b988caf85cea45eca9bcfd9638ea7112a7d
MD5 562422368571100401e57c68f82faea8
BLAKE2b-256 f7b9501feede4e5e1a65d1e7cad20020bafa9fcdd024706ce53ba7babaa8306b

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59bbccece44601ab1a2f43e893d37f14531ae9a2ba406dd91b843637063679ce
MD5 0573eac1e40d9089a27294acc06086e6
BLAKE2b-256 d54f73a372023977f35ccc964d9d7be6367a4c2d2d1fab20d1ef55fbee14cd26

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 02346ca42ac68c2744fe86fc11698d0ed54e8f7c1f5384331689d58ab7b25906
MD5 8152e0735173ec417af7573fb8802ab0
BLAKE2b-256 ac8f71d4cbcec572aaafecb96825f605d1b489e532272ba7f4e862619e3d22da

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5fe72539e8a1679c927f06c2c93b8041f3422f1f74039ab1fa0539e4721daf28
MD5 c3463240238ec8d08024de8290989c0e
BLAKE2b-256 594f35c12897f5ed1662f854214f1e5b25f89b77f3630ca88c554da281701e4e

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 078e99cd291bcb78cf4fb04f87d7a6e9911765b64bc11e2a3d6c1b4e46c846a7
MD5 58bcea29ef6c7e18c01c978ae9ea144d
BLAKE2b-256 fb798da65fd5dc350d0d5334c1b957b747f51ebbe73da80c02f9ff5b9c52566d

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 04ca6b13d983685b06cf4d30aef6cc7be1dd838143dec1626a9ba0b49837d6d6
MD5 674a8ab198d93a278dbc17f55469e2fa
BLAKE2b-256 7aadeaf865da5a8850f379516692cd29f87031ab656e32fc26192936c140296b

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 24127a3b093f673c64fcdbd3de4862a225542365756730c364a9a1153cb309dd
MD5 8fe85b9ef89114771f11875d729982ce
BLAKE2b-256 478d4c2c2f0d35032c9ba5d09b0546e694f34ede1bcdded965d5a5e6ea226f4a

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 b0349a007a0b40ce6faa69c289aa2a7025a59b97ae087b1d3a8b41e8a3190394
MD5 05bbf8b20fbe8009ff448f186573b71a
BLAKE2b-256 1fc535684a1bc47011d044f9d81baef74ab96828dacad2ed7d0a8e0e63c594f6

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 224bfb4801cc2fb215757eda1e046531f766077c6fd50476d273d77c27c5fbd4
MD5 b18d13477fe78eeb561aca8c5bb6fd87
BLAKE2b-256 2c84312fdd76bd4d252e1321eff83175bd834b70e3f661636c12b73c52d14477

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.8.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1d21012552e636c93d4e64fd505962f7b14d84cf026ed36d25b5e384c781e8d1
MD5 cedad53559e42b283c33a2cb3d5a2fa6
BLAKE2b-256 25da745b46591caa824ac43c96ee88ab51cb1a7ad9838aa0eedbadb94be17fee

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ddc55ef4f453b577d6632352e9b4eddfe8948441931fd2de293b64bc9ed9d765
MD5 f1a3cebc680fc41495b1dcff1ed00015
BLAKE2b-256 07e7494af6df4b2759d8a183a57897db7aa61183e5317ff2b3e693037bcc2c1c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffba47ab0b4085054d76ed321974f1ce023a97ee82b23048d6f81f61e5cf7c08
MD5 99d100f8de7f2c3db6a92d5da782c0da
BLAKE2b-256 0e3c36a4fe54119b98797df6e2594c230847406b0aef2e36c2db46fbaa964c18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page