Skip to main content

OPL2/3 Adlib emulation

Project description

PyOPL: OPL2/3 emulation for Python

http://www.github.com/Malvineous/pyopl

PyOPL is a simple wrapper around an OPL synthesiser so that it can be accessed from within Python. It uses the DOSBox synth, which has been released under the GPL license.

PyOPL does not include any audio output mechanism, it simply converts register and value pairs into PCM data. The example programs use PyAudio for audio output. Note that PyGame is not suitable for this as it lacks a method for streaming audio generated on-the-fly, and faking it by creating new Sound objects is unreliable as they do not always queue correctly.

To install it:

pip install PyOPL

The code is compiled like this:

pip install build
python -m build

Install the build wheel:

python -m pip install .

This library is released under the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyOPL-2.0.tar.gz (33.8 kB view details)

Uploaded Source

Built Distributions

PyOPL-2.0-pp310-pypy310_pp73-win_amd64.whl (30.9 kB view details)

Uploaded PyPy Windows x86-64

PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (32.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (30.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyOPL-2.0-pp39-pypy39_pp73-win_amd64.whl (30.9 kB view details)

Uploaded PyPy Windows x86-64

PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (32.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (30.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyOPL-2.0-pp38-pypy38_pp73-win_amd64.whl (30.9 kB view details)

Uploaded PyPy Windows x86-64

PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (32.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (30.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyOPL-2.0-cp311-abi3-win_amd64.whl (30.8 kB view details)

Uploaded CPython 3.11+ Windows x86-64

PyOPL-2.0-cp311-abi3-win32.whl (28.4 kB view details)

Uploaded CPython 3.11+ Windows x86

PyOPL-2.0-cp311-abi3-musllinux_1_1_x86_64.whl (639.2 kB view details)

Uploaded CPython 3.11+ musllinux: musl 1.1+ x86-64

PyOPL-2.0-cp311-abi3-musllinux_1_1_i686.whl (688.2 kB view details)

Uploaded CPython 3.11+ musllinux: musl 1.1+ i686

PyOPL-2.0-cp311-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94.3 kB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-cp311-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (90.0 kB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-cp311-abi3-macosx_10_9_x86_64.whl (32.2 kB view details)

Uploaded CPython 3.11+ macOS 10.9+ x86-64

PyOPL-2.0-cp310-cp310-win_amd64.whl (30.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyOPL-2.0-cp310-cp310-win32.whl (28.5 kB view details)

Uploaded CPython 3.10 Windows x86

PyOPL-2.0-cp310-cp310-musllinux_1_1_x86_64.whl (645.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyOPL-2.0-cp310-cp310-musllinux_1_1_i686.whl (693.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyOPL-2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (98.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (93.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-cp310-cp310-macosx_10_9_x86_64.whl (32.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyOPL-2.0-cp39-cp39-win_amd64.whl (30.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyOPL-2.0-cp39-cp39-win32.whl (28.5 kB view details)

Uploaded CPython 3.9 Windows x86

PyOPL-2.0-cp39-cp39-musllinux_1_1_x86_64.whl (644.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyOPL-2.0-cp39-cp39-musllinux_1_1_i686.whl (693.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyOPL-2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (97.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (93.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-cp39-cp39-macosx_10_9_x86_64.whl (32.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyOPL-2.0-cp38-cp38-win_amd64.whl (30.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyOPL-2.0-cp38-cp38-win32.whl (28.5 kB view details)

Uploaded CPython 3.8 Windows x86

PyOPL-2.0-cp38-cp38-musllinux_1_1_x86_64.whl (645.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

PyOPL-2.0-cp38-cp38-musllinux_1_1_i686.whl (693.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

PyOPL-2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (98.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

PyOPL-2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (94.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyOPL-2.0-cp38-cp38-macosx_10_9_x86_64.whl (32.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file PyOPL-2.0.tar.gz.

File metadata

  • Download URL: PyOPL-2.0.tar.gz
  • Upload date:
  • Size: 33.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0.tar.gz
Algorithm Hash digest
SHA256 c59ec79c34df904a9cf52a1439c783fce077bd34653c16b18c62c012eb75f2c5
MD5 b0b8b97d2ea9ecaf13e8f8f3806a05da
BLAKE2b-256 75d19bf6748cc0347e19d7c1326c40b7f5d1be94f93f96373329a5402a3b6881

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 80de71248ddc0c5f48a8c5040efae369df32c176dbd4c6ade412fe5b01a5fd29
MD5 ce8cef841aee52a17724173b22b2d908
BLAKE2b-256 d7bb8165c3f8583b3c54a638ece27778dc2185b7bf29bebf06295d29ac088c6e

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64dd144d2aa566afccedd1eb6ff67d645ffb94df7c8fcd47ee6a3975b0493dbf
MD5 a53707aa8432938493446c7bc73970b7
BLAKE2b-256 d0b739866af537322232d6d9b474a3561b97e645b3b80d16edcb04a2141161aa

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f82dc3c617e81cd11f4def37808d214577c5aa0eebf29a75135b10e88ccfbddc
MD5 526a6cde3d8461a5f4c9ec823cccc321
BLAKE2b-256 a48ce2174e840befab86a714e28e23c4288c17fdf539d697da25a3d8ecbf8104

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a17d48ec06fc30a39fb28effcc29572a4af7ef39c54ef7609ae3200a12cb260d
MD5 9065551ea5300f9c48ba111acd1a631b
BLAKE2b-256 2c082600b6a2292335e52e6139456e5578ada59be406d2fdb8ffb44783ff445f

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a4786e52abd3a71ab28fa70a0245ab21928ecf632831bff501aa17f3ad70d91d
MD5 66f51ca8b3f973cc0f80699449fbb97a
BLAKE2b-256 fbf71955f2c8f04b475f8cf74ca5150afbf4d180db0475ec9e9434bae1600e01

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 375b275d40f8bb44b441c6de1d7050fc06264d8a4c9b5c389cb85ec7cb90dae5
MD5 56c2cec7bf71a1a676342b00aa93bde1
BLAKE2b-256 329095cc49b8c032ad7a748f98d9e0fec06bad4dc98e4bb0d5bf5d8e4df4f1c6

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 baee465211ad2ecf2c212ea3eb4397dba5626fd9c7498cfc24add859e943249f
MD5 3fb242b3919835a1dfd5476657fa41eb
BLAKE2b-256 c6306db3ab66cd15e1761b52652efe7271243ba03dd94a1b13809a99e0e55e38

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b2ea0121e655716c449cbc62973ff40c70081f486e9b68fdc0b4aa2721a2122e
MD5 7b7fb8f582e0990d439a62da487d353c
BLAKE2b-256 c6dfeaa623e4838c1d2df3896032809561f4e511d63265c0077b25714a6f1978

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3ea9cc57dd5daad69613d8c8a1c4d8c06484734f25460dc27d73355c658ed3d8
MD5 74d6e0caaeb81be1ec539178cc8a2268
BLAKE2b-256 123f8789042da706b8365b68923f14f55b9389cdb0405c35fe42b6a6b7d3ee32

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d1cb2f970c8c46ddfa3e334fd74d7ef1b789fc8051c939c3d063c97a76fa9f1
MD5 57a4074c155ca55cae9d0923b085ec83
BLAKE2b-256 09e597251d073bb6a0d4441f426952cc09fb7cb3d36d6f738c8776172dc5eef0

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 45920b0f76df853e52b9ed9efbb55866044dd001f96d846634afbe92cd1ff270
MD5 ff44b378b0c6d6ce8cc70a682acd33a4
BLAKE2b-256 395a55fc5424b7a9491e295d77ad6365aba10605db06728a64f7e7d42fcd91c4

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7664172db1a3ab1adaa4fa6621cadbea8f20d2dd8ac3f5e111ca56366abe74bd
MD5 c7c4fac8b7f270359433d01bdea795da
BLAKE2b-256 5ad505c44e5da33cc299af98bc5f651fa8a08288635ae7382cc15c96613a1381

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-win_amd64.whl.

File metadata

  • Download URL: PyOPL-2.0-cp311-abi3-win_amd64.whl
  • Upload date:
  • Size: 30.8 kB
  • Tags: CPython 3.11+, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 6704f0f1e3d61b805a64eaf1fc0790377277d5d796532dd5cdd2f53f3cfcc8c0
MD5 ed69466314246a9cb4d42aaa51c78bd0
BLAKE2b-256 610583f83cdbc5db59f114182fc53c068507dadeee15f23e62b473d166ed27f5

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-win32.whl.

File metadata

  • Download URL: PyOPL-2.0-cp311-abi3-win32.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: CPython 3.11+, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp311-abi3-win32.whl
Algorithm Hash digest
SHA256 3f1dabb8ab7afe82aefb70b9eefbcb4842f87be0b8777d963c3242f2011f8d96
MD5 e39ebaf73a980c7ef0ca7d4d3a8ceda4
BLAKE2b-256 58cc4561df016dd1520fb4cea7305472c601ae80c444f929b73401b92ff5af1d

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp311-abi3-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b5b3f09f98b5e526bb19186e60dc5abe228091e681622082aa0a08ffe046be98
MD5 7aca227a8265ff48f25c4db04d52613b
BLAKE2b-256 e7c6451b05b2d1e94e97176bd692a9223da0fd10de63e5c0c3afa80ce5cd3014

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyOPL-2.0-cp311-abi3-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 688.2 kB
  • Tags: CPython 3.11+, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp311-abi3-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5a0f5f75d0f2b4282b1841e41035670d70f7f0afa5c960410f8d4c0e1f9d6191
MD5 c7d1c549b3e8e61390f643b0e117a5d2
BLAKE2b-256 636f067cbbaa04ad9ee941a570f54dde69f0c038b33928457cec12f84a65c302

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp311-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d19abe148871ca8cf8b196992fd4a5fae59c7173ca8ef01cd6ef5b67b964970a
MD5 e796a5e6f547e1e2f406319f6eb7e2d9
BLAKE2b-256 f4a57835b0d99f103292160ac914d890e70abd22bbef7ef00db0c76391841e7c

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp311-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 35f26fe9ce4b847dc37a00513ad04a3346f95bfb4bebc27589d066656d297189
MD5 cc74a2e305d57e94214e18c6555fcc96
BLAKE2b-256 b7f7fe96a37a9cab0c3935d134ac97209d6352434bea7ab96b51f395336b1680

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp311-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp311-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 372e0862229a3a72eb725a34141688e7ead18524341dc19e3c6baca212adc6e7
MD5 c2e466cc1c469457dee63b194fc611e2
BLAKE2b-256 451c9c8093d6f1f7c008779b8238fb33934f44ce78e3199bffb27e84b09ea9f3

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyOPL-2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bf60cb9abfaf3e32a21d4cfd0757a89e471fe9037aebe6d25695c0e04e7590e6
MD5 9704be4aac55b93f7ecb4d12fa4705fb
BLAKE2b-256 b7ac3b864c9eaf76a0e9224eff7cc8aedf55bde7d5980bcdafdf5caf8271fcb9

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyOPL-2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 56cb35e8750ba8f59ebab1a88679248ee12a4b935f18577f488ae46150629859
MD5 3bc7cb370da72f171670f9c21aa5d4db
BLAKE2b-256 0d312a9cf5b6025dc5c24f0d2cd88d6437ca5244ccee5c65d5f1bfeafe3a81bf

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b3854da0392256b6c491efb2cf3f6afffd73ca7ca8e95557908542c07b9a514b
MD5 84ff66e3e8a7b41aed0a4b8102de166d
BLAKE2b-256 67711d03d8303f54854c51f65a10fc26f39b0d21f46c0de5af1ea7736deebf4d

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 99373711be8e360ce9ce426ac05bc8ed23d463ecef953f7b655d85cdf3316cae
MD5 429567604fe6eccc16c55b1a7500e768
BLAKE2b-256 c94839c1760d3321cc6b4b59ba4e745a759ad3c9aa8ce6804c59ba9d36d0723a

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93c83b17a2b23bc85197da9721df874439c77b9a81d13414f6b4e59ffd9e2657
MD5 15cd1a46347f96866804b48fc957be6d
BLAKE2b-256 d6aac01115469a51ccc26338a286a091fd1cf3a77a97de459f595413400a98a7

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17382838875247e64688d15c319aa11aa4b398309fbda6860622f365ab4a47e3
MD5 d46ee65c07da2a82822cd4b88644f10e
BLAKE2b-256 0300aec6039d2a9c6c0c4bd7283696ee9b025b0264b2b7627caecbc4a381174f

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f0871118bd6855eee8a408124f1df523dd6e89fd1bbbb102c0f8c867ff97ef5
MD5 e4b749aebdd72a1f8da72a5d7ba26d27
BLAKE2b-256 3f7e19a150fc2ed3079636b608314f20be7a9d9b502ea2addf04a33e6144acba

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyOPL-2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f739bdaaa8d78eb1956cebabcfdb4822cb98e26b6ea39f93a20e599a33920b21
MD5 db551b611c7d61ec5e139aa208ad816f
BLAKE2b-256 4e8224d08865aded7bb35b59ef14c95d0386b012c4a3d44e13dcb95b5bc61d67

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyOPL-2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6fe5e9424730f005a5e787e103afc22b2950e6b6422ab009e3276b60bca3fa69
MD5 a6f3de0e61d4a932cb519ac6526862da
BLAKE2b-256 686f5e9cfac3b946f0848b2e8b967e2719ec64fd077fd6e8c93f5dd41aaa26af

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b3cdd52366fd18a4eb72bfbbaea11d2c711ae61ef60573bfb425b6458fe484cd
MD5 39f63b33458081657dc609a1935fd332
BLAKE2b-256 985c7ce173b8a8628890fafa6ead69cdb64f04742914a7a21d7378478b7cd598

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyOPL-2.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 693.6 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4544a9e14b6288e3c0755e443e312d103b837a5089efd9170bd4f3219c3dc331
MD5 786db0c98df5913d3b6ab5953b716c3f
BLAKE2b-256 ef8fea08fc6e1b3e42bcf5561dd121522c685b9ddbd61ad1dc6618577804d3eb

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcf3ae5c7df1bcd7e59f9f9461f2d70e24b895f2c671c67c22676de9bfa93232
MD5 392bf919c1a1c701dd6e7147ea0b54a7
BLAKE2b-256 14a7acdf0c69e9c0c80e0f48cdb9f00a8a126704c09cb433c9898d7ed707cfaa

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2f07783309d853548df122e09a5d24513116b55a44edd1af4d86d29a73f7972
MD5 3016d586a236662f7c1713b933a7cb69
BLAKE2b-256 fc2fc99a267b6f1c295e2adc5ccdea582dae996b4a0b70796cb08c0e001cc966

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dda96a7c79d422506e45a9433bde66996b907e99dff87aff5093b545fa9cfc0
MD5 ee6562fd77158ab9a0c817417cab03ea
BLAKE2b-256 1e29cafdd0c18f848a29766957d43c7129abf342ac40ede7a856843276aad83d

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyOPL-2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 118b0aead8aa4da20868bed8eb380abe92cc93845df2364894101f651e47712d
MD5 468cc51feb885d5dbcc59fb185e5adb8
BLAKE2b-256 d25b5e48a96650e2c80e5c7dc8c281e5b763fbf4bb25f413bd6a674a7920a572

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyOPL-2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 09962265e632d9c3920782b002b208ce5f0c9e68aec0b096759e9e1548f4771d
MD5 08e7e55901866b81446112f6f23b57a5
BLAKE2b-256 b5c93a20d0a4f40dbe3dfdb041f1de7a1bf30fca549c5fc303651e48a967d09a

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1f43109368fa135a5b8fcadf1db2de8e77bc1f62cd8ba1800986ecddde1ff542
MD5 76ea08bbd4212d7dd4e14941e23c01f9
BLAKE2b-256 7d8ee0dad0b24ce00c7fad27f2f9cb8112c07e1bb1b42b88c3c5d4cc5942c919

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyOPL-2.0-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 693.9 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for PyOPL-2.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 210d506aa53bbab57427e3428ca78e24e464fe204e32d502a164c30e384f316a
MD5 f314f511e81646da3e99eac513df8593
BLAKE2b-256 7bff7dcb53319b544c24ca63c596f72f351ffe1ea8778685c1cafb5aa69f8a8a

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a18a2ef571474dd21a01aa7dc84eb5569a0731d9cf78c4856bd50cc31f6a5b92
MD5 7b976063f0088ef0d2bef82958312244
BLAKE2b-256 ca0002e2eba8826f165c7eabb5f3b63ee18664933d2398c7d0129c4db7e153e7

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24b90e621645e60e1d991ec1b71b7f0ffecf09dbe9f6b0358faffd0a88c47bec
MD5 df22fcc57f312e576884287822ce5549
BLAKE2b-256 b7220aa2d71e88c4087b37be4037abf80172294e80b1d486f26ffdeac7f340c5

See more details on using hashes here.

File details

Details for the file PyOPL-2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyOPL-2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b500bc7119d3988c4e8f64101f297dcfbe01febb96e5968f1169864cacd8a4c
MD5 d071a0594cfb6a8ba28d599b74ea2948
BLAKE2b-256 7ab7159dc90bb28fd750db223d422c659a8914d4d68a760c46a0c86e0142993e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page