Skip to main content

Python interface to OpenNGC database data

Project description

A python interface for accessing OpenNGC database data

https://img.shields.io/pypi/v/PyOngc.svg https://img.shields.io/pypi/status/PyOngc.svg https://img.shields.io/pypi/pyversions/PyOngc.svg https://github.com/mattiaverga/PyOngc/actions/workflows/python-package.yml/badge.svg?branch=master https://coveralls.io/repos/github/mattiaverga/PyOngc/badge.svg?branch=master

Description

PyOngc provides a python module to access astronomical data about NGC and IC objects.

The data is based on OpenNGC database https://github.com/mattiaverga/OpenNGC.

It is composed by a python module and a command line interface named (guess what) ongc, which can be used to quickly see object details or build object lists based on several parameters.

PyOngc can pass data to PyEphem in a simple way to get ephemerides of NGC/IC objects: see the documentation about ongc.xephemFormat method.

Usage

>>> from pyongc import ongc
>>> DSOobject = ongc.get("NGC7000")
>>> DSOobject.coords
array([[20.  , 59.  , 17.14],
       [44.  , 31.  , 43.6 ]])

Object data is easily available from command line also:

$ ongc view NGC7000 --details
+-----------------------------------------------------------------------------+
| Id: 13067     Name: NGC7000           Type: HII Ionized region              |
| R.A.: 20:59:17.14      Dec.: +44:31:43.6      Constellation: Cyg            |
| Common names:                                                               |
|    North America Nebula                                                     |
+-----------------------------------------------------------------------------+
| Major axis: 120.0'     Minor axis: 30.0'      Position angle: N/A           |
| B-mag: 4.0     V-mag: N/A     J-mag: N/A     H-mag: N/A     K-mag: N/A      |
|                                                                             |
| Parallax: N/A          Radial velocity: N/A           Redshift: N/A         |
|                                                                             |
| Proper apparent motion in RA: N/A                                           |
| Proper apparent motion in Dec: N/A                                          |
|                                                                             |
+-----------------------------------------------------------------------------+
| Other identifiers:                                                          |
|    C 020, LBN 373                                                           |
+-----------------------------------------------------------------------------+

Additionally, the available data can be manipulated through Pandas:

>>> from pyongc import data
>>> data.clusters(globular=True, open=False)
        name type        ra       dec const  ...  parallax  pmra  pmdec radvel  redshift
0     IC1257  GCl  4.569009 -0.123798   Oph  ...       NaN   NaN    NaN    NaN       NaN
1     IC1276  GCl  4.759242 -0.125796   Se2  ...    0.1100 -2.47  -4.41  155.0  0.000517
2     IC2134  GCl  1.409778 -1.316796   Men  ...       NaN   NaN    NaN    NaN       NaN
3     IC2140  GCl  1.454580 -1.315548   Men  ...       NaN   NaN    NaN    NaN       NaN
4     IC2146  GCl  1.473853 -1.305213   Men  ...       NaN   NaN    NaN  226.0  0.000755
..       ...  ...       ...       ...   ...  ...       ...   ...    ...    ...       ...
199  NGC7006  GCl  5.504278  0.282526   Del  ...       NaN -0.08  -0.61 -383.0 -0.001278
200  NGC7078  GCl  5.628569  0.212351   Peg  ...    0.0522 -0.63  -3.80 -107.0 -0.000356
201  NGC7089  GCl  5.643741 -0.014369   Aqr  ...    0.0612  3.51  -2.16   -4.0 -0.000012
202  NGC7099  GCl  5.673921 -0.404551   Cap  ...    0.0676 -0.73  -7.24 -185.0 -0.000618
203  NGC7492  GCl  6.058233 -0.272472   Aqr  ...    0.0528  0.76  -2.30 -177.0 -0.000589

[204 rows x 22 columns]

The full documentation is available at https://pyongc.readthedocs.io/en/latest/.

License

PyOngc code is licensed under MIT. The documentation and the database from OpenNGC are licensed under CC-BY-SA-4.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyOngc-1.1.0.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

PyOngc-1.1.0-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file PyOngc-1.1.0.tar.gz.

File metadata

  • Download URL: PyOngc-1.1.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for PyOngc-1.1.0.tar.gz
Algorithm Hash digest
SHA256 a6447f21b97676dbd20702a12a1d1365e16362d9c98f66aa7b9e295d7467815e
MD5 496667ed1d792a18c3c75f6a9e27532c
BLAKE2b-256 c91f8920ab015c52379352fd8037094ab50c8c798a5f9a27398a743e0063d669

See more details on using hashes here.

File details

Details for the file PyOngc-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: PyOngc-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for PyOngc-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 706b75a40fbfe4a3ae2d59656333eea22bb515d00750220182f8f29305cb4e3e
MD5 1ecf099c116c8141742a1f8026303973
BLAKE2b-256 8145419439b279db5865c1c45be33d901c1e593a66e34021cf08d0f9f2f9cefd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page