Skip to main content

Python bindings for the 'Procedural Runtime' (PRT) of CityEngine by Esri.

Project description

PyPRT provides a Python binding for PRT (Procedural RunTime) of CityEngine. This enables the execution of CityEngine CGA rules within Python. Using PyPRT, the generation of 3D content in Python is greatly simplified. Therefore, Python developers, data scientists, GIS analysts, etc. can efficiently make use of CityEngine rule packages in order to create 3D geometries stored as Python data structures, or to export these geometries in another format (like OBJ, Scene Layer Package, ... ). Given an initial geometry, on which to apply the CGA rule, the 3D generation is procedurally done in Python (Python script, Jupyter Notebook, ...). This allows for efficient and customizable geometry generation. For instance, when modeling buildings, PyPRT users can easily change the parameters of the generated buildings (like the height or the shape) by changing the values of the CGA rule input attributes. PyPRT 3D content generation is based on CGA rule packages (RPK), which are authored in CityEngine. RPKs contain the CGA rule files that define the shape transformations, as well as supplementary assets. RPK examples can be found below and directly used in PyPRT. PyPRT allows generating 3D models on multiple initial geometries. Different input attributes can be applied on each of these initial shapes. Moreover, the outputted 3D geometries can either be used inside Python or exported to another format by using one of PRT encoders.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyprt-1.10.0.9-cp311-cp311-win_amd64.whl (49.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyprt-1.10.0.9-cp311-cp311-manylinux_2_28_x86_64.whl (64.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pyprt-1.10.0.9-cp310-cp310-win_amd64.whl (49.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyprt-1.10.0.9-cp310-cp310-manylinux_2_28_x86_64.whl (64.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

pyprt-1.10.0.9-cp39-cp39-win_amd64.whl (49.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyprt-1.10.0.9-cp39-cp39-manylinux_2_28_x86_64.whl (64.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

pyprt-1.10.0.9-cp38-cp38-win_amd64.whl (49.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyprt-1.10.0.9-cp38-cp38-manylinux_2_28_x86_64.whl (64.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

File details

Details for the file pyprt-1.10.0.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyprt-1.10.0.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyprt-1.10.0.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb01dc94c1b14e151fcbc8df6db02c682c7e871e8aa0222f77d04759ca7b7c35
MD5 e008b79045c9e1330309cca4752ffd8c
BLAKE2b-256 dc6ef98205b20a8a67e08a517b02196fbdb128bfb74b97856998a7bff269e246

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyprt-1.10.0.9-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 13b9494a54655f58838b29579db6f5d9288022c3f9bb3dca4168541065ad60d6
MD5 a9bd38804b52476f15347d7dcf5ad854
BLAKE2b-256 1fefa942862b1d7f0ca120d2ba582185438ac303afb2c8426fd0eef07155a9dc

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyprt-1.10.0.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyprt-1.10.0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f4471b3fbfd59e03547a807cc4843dce19a358f8ab25c682110e39002e2feccc
MD5 36a023bd8a8f593a0e693dc5d2aaf9f4
BLAKE2b-256 5b187135c80316de7d686e7bd2cee8c96130d4a8728bb957eb409055fada0d57

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyprt-1.10.0.9-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6acada167a67471760df5b6f3d8a573bf3cd55ce28e36d4df5612dc7bd8ec7d3
MD5 9647d3719dbfb64b2124c54db1676978
BLAKE2b-256 e2fea14bc4839d28a7e685da6c6e26a2068a54cfff3595c0bd8645dca31c3b23

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyprt-1.10.0.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyprt-1.10.0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 55d48bd995f6adb3c23870a76af14be76bfaa5b61344219e08209cbd22518cdf
MD5 9575d54bfad226bb27b5873428114d62
BLAKE2b-256 f627f082e37d47617323ebd38e36f5aade7301ec0e5797039de0cd56c73df0f5

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyprt-1.10.0.9-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bd91dc4a83ade52e44b090f6215ce8248e66e56723105c4f1727d8c16d74dc31
MD5 6ecc107fa6e0dbefaeef742646400b8a
BLAKE2b-256 c7ad73abe14adeaa64dbd730f323b93a1f1bb82c430f5fee5e2983bc7f5fe71b

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyprt-1.10.0.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyprt-1.10.0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6db1b9a1a231495229ad864ad861e2b9b1e629dd05074b3f6597a832a87e3fe6
MD5 83f66dcb772b67f750d29969c6b28f50
BLAKE2b-256 64848ec9242ca36476518ed0ca8dc66a6bd7734cbc8edde7d7bc8f601b725ba6

See more details on using hashes here.

File details

Details for the file pyprt-1.10.0.9-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyprt-1.10.0.9-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d69496871eb26dd7d94c70e53b95b0675af50498f57f6847790b3bdea9c3f8aa
MD5 bd7c00b2ab9d0a5da1c3c0bed6b25c12
BLAKE2b-256 72209e7f17ecffdffc8f399e461802079916274fb3edeaf6c5a9095ac70a52c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page