Skip to main content

A Python math package written in pure Python programming language [python_requires >= 3.5]

Project description

PyPyNum

A Python math package written in pure Python programming language ( python_requires >= 3.5)

 ________   ___    ___  ________   ___    ___  ________    ___  ___   _____ ______
|\   __  \ |\  \  /  /||\   __  \ |\  \  /  /||\   ___  \ |\  \|\  \ |\   _ \  _   \
\ \  \|\  \\ \  \/  / /\ \  \|\  \\ \  \/  / /\ \  \\ \  \\ \  \\\  \\ \  \\\__\ \  \
 \ \   ____\\ \    / /  \ \   ____\\ \    / /  \ \  \\ \  \\ \  \\\  \\ \  \\|__| \  \
  \ \  \___| \/  /  /    \ \  \___| \/  /  /    \ \  \\ \  \\ \  \\\  \\ \  \    \ \  \
   \ \__\  __/  / /       \ \__\  __/  / /       \ \__\\ \__\\ \_______\\ \__\    \ \__\
    \|__| |\___/ /         \|__| |\___/ /         \|__| \|__| \|_______| \|__|     \|__|
          \|___|/                \|___|/

Version -> 1.3.0 | PyPI -> https://pypi.org/project/PyPyNum/ | Gitee -> https://www.gitee.com/PythonSJL/PyPyNum

LOGO

介绍

Introduction

  • DIY数学库,类似于numpy、scipy等,专为PyPy解释器制作
  • DIY math library, similar to numpy, scipy, etc., specifically designed for PyPy interpreters
  • 不定期更新版本,增加更多实用功能
  • Update versions periodically to add more practical features
  • 如需联系,QQ 2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)
  • If you need to contact, QQ 2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)

PyPyNum的Zen

The Zen of PyPyNum

    The Zen of PyPyNum, by Shen Jiayi

This is a math package written purely in Python.

... (Do you want to see the entire content?
Then enter "from pypynum import this" on your
Python interpreter and run it!)

                                December 27, 2023

与上一个版本相比新增功能

New features compared to the previous version

PyPyNum
    Group
        CLASSES
            Group
              |  __eq__(self, other)
              |  __init__(self, data)
              |  __ne__(self, other)
              |  __repr__(self)
              |  has_identity(self, operation=<function multiply at ...>)
              |  has_inverses(self, operation=<function multiply at ...>)
              |  is_associative(self, operation=<function multiply at ...>, modulus=None)
              |  is_closed(self, operation=<function multiply at ...>, modulus=None)
              |  is_group(self, operation=<function multiply at ...>, modulus=None)
              |  is_semigroup(self, operation=<function multiply at ...>, modulus=None)
              |  order(self)
        FUNCTIONS
            add(x, y)
            divide(x, y)
            group(data)
            multiply(x, y)
            subtract(x, y)
    file 
        FUNCTIONS
            read(file: str) -> list
            write(file: str, *cls: object)

[Additionally, revise and supplement the original code]

基本结构

Basic structure

PyPyNum
    __init__
        [Import some features from other modules in this package]
    errors [Special errors]
        CLASSES
            LogicError
            RandomError
            ShapeError
    file [Reading and saving instance data]
        FUNCTIONS
            read(file: str) -> list
            write(file: str, *cls: object)
    test
        [A code test file]
    this
        [The Zen of PyPyNum]
    types [Special types]
        DATA
            arr = typing.Union[list, tuple]
            ite = typing.Union[list, tuple, str]
            num = typing.Union[int, float, complex]
            real = typing.Union[int, float]
    Array [N-dimensional array]
        CLASSES
            Array
        FUNCTIONS
            array(data=None)
            function(_array, _function, args=None)
            get_shape(data)
            is_valid_array(_array, _shape)
            zeros(_dimensions)
            zeros_like(_nested_list)
    Geometry [Planar geometry]
        CLASSES
            Circle
            Line
            Point
            Polygon
            Quadrilateral
            Triangle
        FUNCTIONS
            distance(g1, g2, error: int | float = 0) -> float
    Group [Group theory]
        CLASSES
            Group
        FUNCTIONS
            add(x, y)
            divide(x, y)
            group(data)
            multiply(x, y)
            subtract(x, y)
    Logic [Logic circuit simulation]
        CLASSES
            Basic
                Binary
                    AND
                    COMP
                    HalfAdder
                    HalfSuber
                    JKFF
                    NAND
                    NOR
                    OR
                    XNOR
                    XOR
                Quaternary
                    TwoBDiver
                    TwoBMuler
                Ternary
                    FullAdder
                    FullSuber
                Unary
                    DFF
                    NOT
                    TFF
    Matrix [Matrix calculation]
        CLASSES
            Matrix
        FUNCTIONS
            eig(matrix)
            identity(n)
            lu(matrix)
            mat(data)
            qr(matrix)
            same(rows, cols, value=0)
            svd(matrix)
            tril_indices(n, k=0, m=None)
            zeros(_dimensions)
            zeros_like(_nested_list)
    Quaternion [Quaternion calculation]
        CLASSES
            Euler
            Quaternion
        FUNCTIONS
            change(data: Euler | Quaternion) -> Quaternion | Euler
            euler(yaw: int | float = 0, pitch: int | float = 0, roll: int | float = 0) -> Euler
            quat(w: int | float = 0, x: int | float = 0, y: int | float = 0, z: int | float = 0) -> Quaternion
    Symbolics [Symbol calculation]
        FUNCTIONS
            interpreter(expr: str) -> list
        DATA
            basic = '%()*+-./0123456789'
            english = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
            greek = 'ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟ∏ΡΣΤΥΦΧΨΩβγδεζηθικλμνξοπρστυφχψω'
            operators = ['**', '*', '//', '/', '%', '+', '-']
            valid = '%()*+-./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcd...yzΑΒΓΔΕΖΗΘ...'
    Tensor [Tensor calculation]
        CLASSES
            Tensor
        FUNCTIONS
            ten(data)
            tensor_and_number(tensor, operator, number)
            tolist(_nested_list)
            zeros(_dimensions)
            zeros_like(_nested_list)
    Vector [Vector calculation]
        CLASSES
            Vector
        FUNCTIONS
            same(length, value=0)
            vec(data)
            zeros(_dimensions)
            zeros_like(_nested_list)
    cipher [String encryption and decryption algorithms]
        FUNCTIONS
            dna(string: str, decrypt: bool = False) -> str
    constants [Constants in mathematics and science]
        DATA
            AMU = 1.6605402e-27
            EB = 1152921504606846976
            G = 6.6743e-11
            GB = 1073741824
            KB = 1024
            MB = 1048576
            NA = 6.02214076e+23
            PB = 1125899906842624
            TB = 1099511627776
            YB = 1208925819614629174706176
            ZB = 1180591620717411303424
            atto = 1e-18
            c = 299792458
            centi = 0.01
            deci = 0.1
            deka = 10.0
            e = 2.718281828459045
            exa = 1e+18
            femto = 1e-15
            gamma = 0.5772156649015329
            giga = 1000000000.0
            h = 6.62607015e-34
            hecto = 100.0
            inf = inf
            kilo = 1000.0
            mega = 1000000.0
            micro = 1e-06
            milli = 0.001
            nan = nan
            nano = 1e-09
            peta = 1000000000000000.0
            phi = 1.618033988749895
            pi = 3.141592653589793
            pico = 1e-12
            qe = 1.60217733e-19
            tera = 1000000000000.0
            yocto = 1e-24
            yotta = 1e+24
            zepto = 1e-21
            zetta = 1e+21
    equations [Solving specific forms of equations]
        FUNCTIONS
            mles = multivariate_linear_equation_system(left: list, right: list) -> None | list
            multivariate_linear_equation_system(left: list, right: list) -> None | list
            pe = polynomial_equation(coefficients: list) -> list
            polynomial_equation(coefficients: list) -> list
    mathematics [Mathematical functions]
        FUNCTIONS
            A = arrangement(n: int, r: int) -> int
            C = combination(n: int, r: int) -> int
            acos(x: int | float) -> int | float
            acosh(x: int | float) -> int | float
            acot(x: int | float) -> int | float
            acoth(x: int | float) -> int | float
            acsc(x: int | float) -> int | float
            acsch(x: int | float) -> int | float
            arrangement(n: int, r: int) -> int
            asec(x: int | float) -> int | float
            asech(x: int | float) -> int | float
            asin(x: int | float) -> int | float
            asinh(x: int | float) -> int | float
            atan(x: int | float) -> int | float
            atanh(x: int | float) -> int | float
            beta(p: int | float, q: int | float) -> int | float
            combination(n: int, r: int) -> int
            cos(x: int | float) -> int | float
            cosh(x: int | float) -> int | float
            cot(x: int | float) -> int | float
            coth(x: int | float) -> int | float
            csc(x: int | float) -> int | float
            csch(x: int | float) -> int | float
            definite_integral(f, x_start: int | float, x_end: int | float, n: int = 10000000) -> float
            derivative(f, x: int | float, h: int | float = 1e-07) -> float
            erf(x: int | float) -> float
            exp(x: int | float) -> int | float
            factorial(n: int) -> int
            freq(data: list | tuple) -> dict
            gamma(alpha: int | float) -> float
            gaussian(x: int | float, _mu: int | float = 0, _sigma: int | float = 1) -> float
            ln(x: int | float) -> int | float
            mean(numbers: list | tuple) -> int | float | complex
            median(numbers: list | tuple) -> int | float | complex
            mode(data: list | tuple) -> <built-in function any>
            pi(i: int, n: int, f) -> int | float | complex
            product(numbers: list | tuple) -> int | float | complex
            ptp(numbers: list | tuple) -> int | float | complex
            root(x: int | float | complex, y: int | float | complex) -> int | float | complex
            sec(x: int | float) -> int | float
            sech(x: int | float) -> int | float
            sigma(i: int, n: int, f) -> int | float | complex
            sigmoid(x: int | float) -> float
            sign(x: int | float) -> int
            sin(x: int | float) -> int | float
            sinh(x: int | float) -> int | float
            std(numbers: list | tuple) -> int | float | complex
            tan(x: int | float) -> int | float
            tanh(x: int | float) -> int | float
            var(numbers: list | tuple) -> int | float | complex
            zeta(alpha: int | float) -> float
    neuralnetwork [A simple neural network model]
        CLASSES
            NeuralNetwork
    plotting [Draw a graph of equations using characters]
        FUNCTIONS
            background(right: int | float = 5, left: int | float = -5, top: int | float = 5, bottom: int | float = -5, complexity: int | float = 5, ratio: int | float = 3, merge: bool = False) -> list | str
            binary(function, right: int | float = 5, left: int | float = -5, top: int | float = 5, bottom: int | float = -5, complexity: int | float = 5, ratio: int | float = 3, error=0, compare='==', merge: bool = True, basic: list = None, character: str = '.', data: bool = False) -> list | str
            c_unary(function, start: int | float, end: int | float, interval: int | float = 5, projection: str = 'ri', right: int | float = 5, left: int | float = -5, top: int | float = 5, bottom: int | float = -5, complexity: int | float = 5, ratio: int | float = 3, merge: bool = True, basic: list = None, character: str = '.', data: bool = False) -> list | str
            change(data: list | str) -> list | str
            unary(function, right: int | float = 5, left: int | float = -5, top: int | float = 5, bottom: int | float = -5, complexity: int | float = 5, ratio: int | float = 3, merge: bool = True, basic: list = None, character: str = '.', data: bool = False) -> list | str
    random [Generate random numbers or random arrays]
        FUNCTIONS
            choice(seq: list | tuple | str, shape: list | tuple = None)
            gauss(mu: int | float = 0, sigma: int | float = 1, shape: list | tuple = None) -> float | list
            gauss_error(original: list | tuple, mu: int | float = 0, sigma: int | float = 1) -> list
            rand(shape: list | tuple = None) -> float | list
            randint(a: int, b: int, shape: list | tuple = None) -> int | list
            uniform(a: int | float, b: int | float, shape: list | tuple = None) -> float | list
    regression [Linear regression and parabolic regression]
        FUNCTIONS
            linear_regression(x, y)
            parabolic_regression(x, y)
    tools [Other useful tools]
        FUNCTIONS
            classify(array: list | tuple) -> dict
            deduplicate(iterable: list | tuple | str) -> list | tuple | str
            frange(start: int | float, stop: int | float, step: float = 1.0) -> list
            linspace(start: int | float, stop: int | float, number: int) -> list

代码测试

Code testing

>>> from pypynum import (Array, Geometry, Matrix, Quaternion, Symbolics, Tensor, Vector,
                         cipher, constants, equations, mathematics, plotting, random, regression, tools)

...

>>> print(Array.array())
>>> print(Array.array([1, 2, 3, 4, 5, 6, 7, 8]))
>>> print(Array.array([[1, 2, 3, 4], [5, 6, 7, 8]]))
>>> print(Array.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))

[]
[1 2 3 4 5 6 7 8]
[[1 2 3 4]
 [5 6 7 8]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]

>>> triangle = Geometry.Triangle((0, 0), (2, 2), (3, 0))
>>> print(triangle.perimeter())
>>> print(triangle.area())
>>> print(triangle.centroid())

8.06449510224598
3.0
(1.6666666666666667, 0.6666666666666666)

>>> m0 = Matrix.mat([[1, 2], [3, 4]])
>>> m1 = Matrix.mat([[5, 6], [7, 8]])
>>> print(m0)
>>> print(m1)
>>> print(m0 + m1)
>>> print(m0 @ m1)
>>> print(m0.inv())
>>> print(m1.rank())

[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 6  8]
 [10 12]]
[[19 22]
 [43 50]]
[[-2.0  1.0]
 [ 1.5 -0.5]]
2

>>> q0 = Quaternion.quat(1, 2, 3, 4)
>>> q1 = Quaternion.quat(5, 6, 7, 8)
>>> print(q0)
>>> print(q1)
>>> print(q0 + q1)
>>> print(q0 * q1)
>>> print(q0.inverse())
>>> print(q1.conjugate())

(1+2i+3j+4k)
(5+6i+7j+8k)
(6+8i+10j+12k)
(-60+12i+30j+24k)
(0.18257418583505536+-0.3651483716701107i+-0.5477225575051661j+-0.7302967433402214k)
(5+-6i+-7j+-8k)

>>> print(Symbolics.basic)
>>> print(Symbolics.english)
>>> print(Symbolics.greek)
>>> print(Symbolics.interpreter("-(10+a-(3.14+b0)*(-5))**(-ζn1-2.718/mΣ99)//9"))

%()*+-./0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟ∏ΡΣΤΥΦΧΨΩβγδεζηθικλμνξοπρστυφχψω
[['10', '+', 'a', '-', ['3.14', '+', 'b0'], '*', '-5'], '**', ['-ζn1', '-', '2.718', '/', 'mΣ99'], '//', '9']

>>> t0 = Tensor.ten([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
>>> t1 = Tensor.ten([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
>>> print(t0)
>>> print(t1)
>>> print(t0 + t1)
>>> print(t0 @ t1)

[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
[[[ 9 10]
  [11 12]]

 [[13 14]
  [15 16]]]
[[[10 12]
  [14 16]]

 [[18 20]
  [22 24]]]
[[[ 31  34]
  [ 71  78]]

 [[155 166]
  [211 226]]]

>>> string = "PyPyNum"
>>> encrypted = cipher.dna(string)
>>> print(string)
>>> print(encrypted)
>>> print(cipher.dna(encrypted, decrypt=True))

PyPyNum
CCCTAGACCCTCGTCCCGCTAAACCCTG
PyPyNum

v0 = Vector.vec([1, 2, 3, 4])
v1 = Vector.vec([5, 6, 7, 8])
print(v0)
print(v1)
print(v0 + v1)
print(v0 @ v1)
print(v0.normalize())
print(v1.angles())

[1 2 3 4]
[5 6 7 8]
[ 5 12 21 32]
70
[0.18257418583505536  0.3651483716701107  0.5477225575051661  0.7302967433402214]
[1.1820279130506308, 1.0985826410133916, 1.0114070854293842, 0.9191723423169716]

>>> print(constants.TB)
>>> print(constants.e)
>>> print(constants.h)
>>> print(constants.phi)
>>> print(constants.pi)
>>> print(constants.tera)

1099511627776
2.718281828459045
6.62607015e-34
1.618033988749895
3.141592653589793
1000000000000.0

>>> p = [1, -2, -3, 4]
>>> m = [
    [
        [1, 2, 3],
        [6, 10, 12],
        [7, 16, 9]
    ],
    [-1, -2, -3]
]
>>> print(equations.pe(p))
>>> print(equations.mles(*m))


    提示:Matrix模块的eig函数可能存在计算错误

    Tip: The eig function of the Matrix module may have calculation errors
    
[2.561552812809, -1.561552812809, 1.0]
[1.666666666667, -0.666666666667, -0.444444444444]

>>> print(mathematics.cot(constants.pi / 3))
>>> print(mathematics.gamma(1.5))
>>> print(mathematics.pi(1, 10, lambda x: x ** 2))
>>> print(mathematics.product([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))
>>> print(mathematics.sigma(1, 10, lambda x: x ** 2))
>>> print(mathematics.var([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))

0.577350269189626
0.886226925452758
13168189440000
6469693230
385
73.29

>>> plt = plotting.unary(lambda x: x ** 2, top=10, bottom=0, character="+")
>>> print(plt)
>>> print(plotting.binary(lambda x, y: x ** 2 + y ** 2 - 10, right=10, left=0, compare="<=", basic=plotting.change(plt)))
>>> print(plotting.c_unary(lambda x: x ** x, start=-10, end=10, interval=100, right=2, left=-2, top=2, bottom=-2, complexity=20, character="-"))

  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |           +                           +           
          |            +                         +            
          |                                                   
          |             +                       +             
  5.00e+00|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |              +                     +              
          |               +                   +               
          |                +                 +                
          |                 +               +                 
          |                  +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |.........  +                           +           
          |.............                         +            
          |..............                                     
          |................                     +             
  5.00e+00|................_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |................                    +              
          |................                   +               
          |..............  +                 +                
          |.............    +               +                 
          |.........         +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  2.00e+00|                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                                                                 
          |                                -------                                          
          |                          ------       -----                                     
          |                       ----                 --                                   
          |                     ---                     --                                  
  0.00e+00|_ _ _ _ _ _ _ _ _ _ --_ _ _ _ _ _ _ _ _-- _ _-- _ _ _ ---------------------------
          |                   --                  -------               ---                 
          |                   -                                           --                
          |                   -                                            -                
          |                   --                                           -                
          |                    --                                         -                 
          |                      --                                      -                  
          |                       ---                                 ---                   
          |                          ----                         ----                      
          |                             --------            -------                         
          |                                     ------------                                
          |                                                                                 
          |                                                                                 
          |                                                                                 
 -2.00e+00|_________________________________________________________________________________
           -2.00e+00                            0.00e+00                            2.00e+00

>>> print(random.gauss(0, 1, [2, 3, 4]))
>>> print(random.rand([2, 3, 4]))
>>> print(random.randint(0, 9, [2, 3, 4]))
>>> print(random.uniform(0, 9, [2, 3, 4]))

[[[0.005010042633490881, 1.1160375815053902, 0.6145920379300898, -1.4696487204627253], [-0.20685462876933186, 0.8275330804972041, -0.8377832703632173, -0.8880186869697656], [-0.2653914684173608, -0.5205164919803434, -0.08359499889147641, -0.3006165927585791]], [[-1.1666695379454972, -1.0979019033440636, 0.5647293393684544, 0.23438322147503707], [0.04298318405503412, -0.6059076560822075, 1.600626179545926, 0.5204087192933082], [-0.058768641542423485, -0.4369666543837353, 0.37851158006771385, 2.0777148219436796]]]
[[[0.40140286579987816, 0.07095255870174488, 0.6446608375143889, 0.6279016180497422], [0.804158734480493, 0.38595139889111474, 0.5653398643367361, 0.9106406788835898], [0.8502113481455789, 0.5679511415517262, 0.667955293914048, 0.43668222316158123]], [[0.06619508720421818, 0.09573784118592021, 0.6821744904157657, 0.9052002792268913], [0.30333795786917084, 0.13357618895131063, 0.144258651211569, 0.648655098110358], [0.8474099644680997, 0.8461881711073397, 0.6529621910052777, 0.17709859779327897]]]
[[[1, 3, 9, 9], [0, 8, 0, 6], [5, 0, 0, 3]], [[9, 5, 6, 2], [6, 4, 9, 6], [8, 4, 8, 6]]]
[[[2.3714687054662273, 7.8682431629091605, 3.4889108978334065, 7.8710116452525885], [8.524292784475549, 6.98190581041993, 3.4297944437860264, 6.068508585966597], [5.111615446006805, 7.916996987595166, 3.589747975729174, 1.3794064763997484]], [[3.295260189867274, 5.608688777939621, 8.217536152479274, 5.209074856197099], [4.95611538157316, 3.2743034659238717, 2.7104110034788764, 2.541949514340043], [8.033753127455242, 4.943764676329522, 7.150364785741341, 6.550305532995521]]]

>>> print(regression.linear_regression(range(5), [2, 4, 6, 7, 8]))
>>> print(regression.parabolic_regression(range(5), [2, 4, 6, 7, 8]))

f(x) = 1.5 * x + 2.4
[1.5, 2.4]
f(x) = -0.214285714 * x ** 2 + 2.357142857 * x + 1.971428571
[-0.214285714, 2.357142857, 1.971428571]

>>> print(tools.classify([1, 2.3, 4 + 5j, "string", list, True, 3.14, False, tuple, tools]))
>>> print(tools.deduplicate(["Python", 6, "NumPy", int, "PyPyNum", 9, "pypynum", "NumPy", 6, True]))
>>> print(tools.frange(0, 3, 0.4))
>>> print(tools.linspace(0, 2.8, 8))

{<class 'int'>: [1], <class 'float'>: [2.3, 3.14], <class 'complex'>: [(4+5j)], <class 'str'>: ['string'], <class 'type'>: [<class 'list'>, <class 'tuple'>], <class 'bool'>: [True, False], <class 'module'>: [<module 'pypynum.tools' from 'F:\\PyPyproject\\PyPyproject1\\pypynum\\tools.py'>]}
['Python', 6, 'NumPy', <class 'int'>, 'PyPyNum', 9, 'pypynum', True]
[0.0, 0.4, 0.8, 1.2000000000000002, 1.6, 2.0, 2.4000000000000004, 2.8000000000000003]
[0.0, 0.39999999999999997, 0.7999999999999999, 1.2, 1.5999999999999999, 1.9999999999999998, 2.4, 2.8]

提示:

测试已成功通过并结束。

这些测试只是这个包功能的一部分。

更多的功能需要自己探索和尝试!

Tip:

The test has been successfully passed and ended.

These tests are only part of the functionality of this package.

More features need to be explored and tried by yourself!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyPyNum-1.3.0.tar.gz (94.5 kB view details)

Uploaded Source

File details

Details for the file PyPyNum-1.3.0.tar.gz.

File metadata

  • Download URL: PyPyNum-1.3.0.tar.gz
  • Upload date:
  • Size: 94.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyPyNum-1.3.0.tar.gz
Algorithm Hash digest
SHA256 d45d267f569dd6fd1bf1d25555d44fc01b95d63263f2218a7c504c63cb66690f
MD5 8617d8b11671612defa8276f41536e78
BLAKE2b-256 d373bfabf60a9f23c3dbaa905779adbbd71090a22086361e722d578f142a45f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page