Skip to main content

Python binding for QBDI

Project description

Introduction

Documentation Status https://img.shields.io/github/v/release/QBDI/QBDI https://img.shields.io/pypi/pyversions/PyQBDI https://img.shields.io/pypi/v/PyQBDI

QuarkslaB Dynamic binary Instrumentation (QBDI) is a modular, cross-platform and cross-architecture DBI framework. It aims to support Linux, macOS, Android, iOS and Windows operating systems running on x86, x86-64, ARM and AArch64 architectures. In addition of C/C++ API, Python and JS/frida bindings are available to script QBDI. Information about what is a DBI framework and how QBDI works can be found in the documentation introduction.

QBDI modularity means it doesn’t contain a preferred injection method and it is designed to be used in conjunction with an external injection tool. QBDI includes a tiny (LD_PRELOAD based) Linux and macOS injector for dynamic executables (QBDIPreload). QBDI is also fully integrated with Frida, a reference dynamic instrumentation toolkit, allowing anybody to use their combined powers.

A current limitation is that QBDI doesn’t handle signals, multithreading (it doesn’t deal with new threads creation) and C++ exception mechanisms. However, those system-dependent features will probably not be part of the core library (KISS), and should be integrated as a new layer (to be determined how).

Status

CPU

Operating Systems

Execution

Memory Access Information

x86-64

Android, Linux, macOS, Windows

Supported

Supported

x86

Android, Linux, macOS, Windows

Supported

Supported

ARM

Android, Linux

Supported (*)

Supported (*)

AArch64

Android, Linux, macOS

Supported (*)

Supported (*)

* The ARM and AArch64 instruction sets are supported but in early support.

Installation

Python API (PyQBDI)

PyQBDI is available through PyPI. The wheel package can be either downloaded or installed with the following command:

pip install PyQBDI

The PyQBDI package is self-contained so completely independent from the C/C++ package.

Devel packages

There is no strict development timeline or scheduled release plan for the QBDI project. All the new features and fixes are merged onto the dev-next branch. Devel packages can be downloaded in the artefacts of:

Compilation

The PyQDBI library (apart from the wheel package) can be built by solely passing the ‘-DQBDI_TOOLS_PYQBDI=ON’ option to the CMake build system.

However, if you want to build the wheel package, you can run these commands:

git clone https://github.com/QBDI/QBDI.git
python -m pip install --upgrade pip
python -m pip install setuptools wheel build
python -m build -w

A 32-bit version of Python is mandatory for the X86 architecture whereas a 64-bit one is required for the X86-64 architecture.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

PyQBDI-0.11.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

PyQBDI-0.11.0-cp312-cp312-win32.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86

PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

PyQBDI-0.11.0-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

PyQBDI-0.11.0-cp312-cp312-macosx_10_14_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

PyQBDI-0.11.0-cp312-cp312-linux_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.12

PyQBDI-0.11.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyQBDI-0.11.0-cp311-cp311-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

PyQBDI-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyQBDI-0.11.0-cp311-cp311-macosx_10_14_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

PyQBDI-0.11.0-cp311-cp311-linux_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.11

PyQBDI-0.11.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyQBDI-0.11.0-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyQBDI-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyQBDI-0.11.0-cp310-cp310-macosx_10_14_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

PyQBDI-0.11.0-cp310-cp310-linux_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.10

PyQBDI-0.11.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyQBDI-0.11.0-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyQBDI-0.11.0-cp39-cp39-macosx_10_14_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

PyQBDI-0.11.0-cp39-cp39-linux_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.9

PyQBDI-0.11.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyQBDI-0.11.0-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

PyQBDI-0.11.0-cp38-cp38-macosx_10_14_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

PyQBDI-0.11.0-cp38-cp38-linux_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.8

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9c90f38689810ff8348400520acc9b772625fd58e50c30f615c1e76bd1611a98
MD5 9df6c20a3fb8ad618b69d5d90085f5fe
BLAKE2b-256 33bdf7ff738625c4f48693ab9ed515f8e5b1d8438d1b6d30c83d97097eb02d59

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0e309c03ef239a5f2e0a4ff8bdda8677e7184a6b6c3b5a4534315850f81f71b4
MD5 cd3049ba810b53b8d23694aeaf9e3c02
BLAKE2b-256 b7780452a3b2df9eaba739295ba389c25b8c340bb31a1321807bc81ce728a6fa

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a297a604ffa110d62d463dd2c3932212e50916e68534d4c1a3c2925172e537ea
MD5 6029fb3f13f8663d3a644ca13d22281e
BLAKE2b-256 23463d7d7a826e954fcd46de7bf0277db791f8ed47e2a9c60bd48d7dab60606c

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3af75713160a8cdb5a99c59313c0777a9be18bde65113521ea96503cd8df8ade
MD5 3687ad4e5e1e7df4e01fca7092ac9998
BLAKE2b-256 af868c69c424734f1d1f166e2b71c80c80849c9fbea89ed460fd1211cea8a00f

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64008cf546bf3aa37bb3470e21febc23b9d9a203dece93c1669bf23239fafd7d
MD5 8e5ae2db666eebb8838b075065a3a8c1
BLAKE2b-256 722468176fd1e6c1fd439440a851e19e3a77ecd0b167175e53ba4aec40c631ac

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cfdce1d387a3b95f4f595c9361176d137f8db07d45161a635a8130821d3fb06
MD5 a23c8aca0e9ee0f261b3fca6374802ea
BLAKE2b-256 47695eea2760aa0a958117411628a00807dfaaa93a59d98690ac7baf1f0df86b

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2cc12ecba5227783f886dc6c36ce763be04708aa9a27dfe20d7ea107a3c62d75
MD5 c6d02f17aff5d48c8fe977daf71f8ab2
BLAKE2b-256 6bc9d85958cd247feec8f8dd445ad75aa588efdab9c295814f38847cb0286cc7

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp312-cp312-linux_armv7l.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp312-cp312-linux_armv7l.whl
Algorithm Hash digest
SHA256 c599a33528731989c60e01d44493c83cfc9eea95fd2a3be44c5049cd338f3ff6
MD5 b6391e5a39b7c036b6e12ac282d20fc5
BLAKE2b-256 357ca9c87954a657a77e2996576a2e8c1995f043b8d64bb35831578746099b7e

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e56fcb514bcfda0289423fc8edc1493c9a7e68036194e0d9db992d423f26c94c
MD5 b053050dbe6c2db0adf99bb5e8d1acb0
BLAKE2b-256 77d27bd886ddbbcd1482c92443fa5a14f809033b1afb139f509e7a95f797170c

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b924bb36d36b93dd178439b9db180a3b008206e249acc756beb3a2cde6a21ced
MD5 df01cf4a8f90bb0465aaeed63351505e
BLAKE2b-256 de202131cebb6d6f204e905c21c2c45d393a31213196a3889c7554d433f07eec

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86aaddce71789f95e8a6d7c0cc16844d63b19374dd987709598861428e86afe8
MD5 1985d30f052e8998a34d50f10f1b15cc
BLAKE2b-256 c50b5db096b5005e0ca82094c882376710c82d82aedb7b47e09cf39bf5da8e8c

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bb2323f1831bb0b8462ad9bbc2ef34ac49f08ee0bc22edf00a9e830a85d5391f
MD5 2099c8f020fd219a194bdf35e44799d6
BLAKE2b-256 a206aa291e2fc2980fc55c2d989e6eb8fd8a7633b63719445ae80b852e3c6e7d

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5639254e49bdba650f8438292f0f43582880fc3f12bc4d9a668eadc963e7aae8
MD5 81da1cc8e933b31f6651520f48a76ff0
BLAKE2b-256 e313fdf94153124d37e1637a43e8276f507c358f981ee5d421a9d24c4fe1d859

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 815884b30e6c6d857995493a8fe51b11978adfe404ca1dc20a614ec6a62cab20
MD5 1cbb06c4f55ef32a7792257d9f886928
BLAKE2b-256 88671eb342ba3b799062b45759f87210e5cfe85476c5e33cc196d9d2e3c801af

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bce1917e91fe72e75d5b174932b592b2f6fc87fb82439ea9042839826c73b44b
MD5 dff23c7aca817a5e30c7575e610dff4c
BLAKE2b-256 f2be61498f9ace903a0265a29d445fd45ef57000bde1bf4e2670940b3a7c5c63

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp311-cp311-linux_armv7l.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp311-cp311-linux_armv7l.whl
Algorithm Hash digest
SHA256 6ac4b4a8f75265ed7f599ceb4e1fa367abb6c87969b35c27ca01c7e40ce079bd
MD5 bdd0cc4fcc4ba02b7e7616abacb1e7bd
BLAKE2b-256 37b345b470992373a4451b3ae1afcc899d57df3c044d1e7b6f1c10605e7d2633

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cbef5be9ebb72a55aeb700ad76289cfd3a0318b45c3ca69618959ecdf6141cdc
MD5 b6bbc84200d39983be66c1325dddca0d
BLAKE2b-256 fdc60bdc2feba477cb22ccbee1f815d3bca4bec5e0989d2d281cc085d0acc430

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 08c669df0cddab3773600d270fd4127895b45e0299c6f253803dfcb3c1273e45
MD5 2373b88ee175a0d9ed2a6d2ee7a38524
BLAKE2b-256 f6f1e17c584eb4f84d86563562c719a626b9c07ee4df47697b885c23acf03996

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e642cefd3aa00a9419df8ccf95b9df371db5976be73695ec17fa53b11ffe43e
MD5 771071fbec17879794c6042656ec4480
BLAKE2b-256 8b329453b9f6eb1fd4ba295c34d98fca532cd0e7b84b688d3b23f19b8a5963b1

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 47753d303198a9b3b686fdd9b439430fcccf9715577750e177dd5321fe2228f5
MD5 8240e843dcef64b06560f8f7b75fa0ba
BLAKE2b-256 392737fd89381649ea6b1ce9acc24d1654f75bf65ab5eef133170ff84bd7523f

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d21d016bcc4145f590b506de9d0a966e1176fb81cce027b26ecf524fa980dd57
MD5 8df6134da191a225cd9cd718e5792a7e
BLAKE2b-256 e5de7baa8f27ff8e99444e869b05d42c3d80331401e8c3d75136aea2ce4bb5c5

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9447e50bdc2163b95122cee0125ea7efe74a185c76b3c1a7b9ac1603f04b86e1
MD5 7ec40cefeb1d40c853450939f23d2cd4
BLAKE2b-256 6c62abdbc699bf5da9ad02b024f1a1cf9ec90cee6b2f0e66441fa5d730a4d72e

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ad9b3a0dec46278e0339ad9591283a9929d40b64e0be908372fcf1b215bd9022
MD5 138483e27c38465eb316deafd04b1b2d
BLAKE2b-256 01b29e915026333407b9e690ea99e37f1b2dc09749bdb34d93e19eaff33db288

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp310-cp310-linux_armv7l.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp310-cp310-linux_armv7l.whl
Algorithm Hash digest
SHA256 cdb15a2710fde80e99c74c3223fb60d3100de842da12b936627cd96207410911
MD5 476fa3c0e9cc2a7dcfa80b08f89c92e4
BLAKE2b-256 693562be220a104ca2a1d77f365c6d286bf13a16afc669d19f1ecdfb2cc46769

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fd3387d032534312c9369b079836e108383228ff86c794ef634ba2d9bc4c7bd7
MD5 3365d363b841c2634032fe4cc7a10db4
BLAKE2b-256 e9eb0df89d3a224442677c83238b2653cfed83271a3348ef75d6f7797f1dac82

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b59d86af2f1d26675ac195020c4805604aaf84086086aca2931a434052c3aed3
MD5 0976813a56acdfcabc81ed4b9cc592b6
BLAKE2b-256 5e15ef43f2ab166c2f8ea794fa14c0df569b4b3ff832004e2e6ff267a4e654db

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40b8ed946bed08dd51beb2b8e20af44bb3c43d9a7da05ba50cc60378cac5bdf1
MD5 061128d70c885214f948a1c532b3b894
BLAKE2b-256 1b49bbaeeead65cd58f6a4c84aa4153e5d549e1bcdfd9a8fffdc373750c4000e

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ef9d535c0a3066088606b22cd75dc857183860d3bebb060850f99b34debde8d
MD5 86aad24f1dfd092c9d8ed0b4d16b67a3
BLAKE2b-256 914a5741e6ecfae6920c3cd88fe33aac687feeca99f32297ef6a424392222d9e

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b920bd34ea5ecf6188042a102839ffc4af0a3f849145a66963d3a24a92cd2e8e
MD5 151bac84599e88931eab5d20bd319e96
BLAKE2b-256 b63f8294464a0a287cc4157eb2b2edab7365db739658929bcc5f727d218b3022

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 50f6da058e89bb9168b1d36bddc092dcb260075bc56a30f7074113b840893548
MD5 3a6b63c5d14d4c397a935248e201dc85
BLAKE2b-256 7174eed5edea52d0aa47d70bc3e2c14ff6b54d660ea598ef9a79e99053d77a2a

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp39-cp39-linux_armv7l.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp39-cp39-linux_armv7l.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp39-cp39-linux_armv7l.whl
Algorithm Hash digest
SHA256 ddf6aede3fbf936f1b8fbaf0ae5770937338d593e01d0e98fbb3c082472f106f
MD5 61ea92b99bdba0a039a0313c34e99a3e
BLAKE2b-256 3836096c44062fb73ba0ba09e09c14b18e882a663db19f33e454af274b580ac8

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 42590ddbd48860afb2369c541a6e32377babfe5efcd48429de3f2389043ba62d
MD5 fc03ee8d2b8cfe378ee84041a9a55a3f
BLAKE2b-256 133428de3998cc2d79c2c18bba1a1b1417f1de8d1c68c88b9400a25fcd21ff38

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b708dcfe5d3c9d48f8b61edb1fed6ed793fa35f1e1c689a047f8cdc60c52b023
MD5 4b348e2ff52e93bb4ef1afc21d46388f
BLAKE2b-256 150d2323d842bbe7a7ed2faae7764c17f9b6eb4519221157678fc4eaec950abe

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41fad7f55d06fea3f90d2d07ce3d382cf7745015a07a72a1b9ad28d555521e83
MD5 e04f1e15017269ca595ab870f1ec2044
BLAKE2b-256 301177cb609caa77fb27b06a557bcf47638e8396316baec54bb00a6e7b1c1b0c

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e26f301c35b94503728fd92ed56e6ddd6c036d56ccbf35c1ec8db53e631cb5d
MD5 9d08c38f58018a7bf497e669baf4c616
BLAKE2b-256 dcce2eb18f9ad350b935c20cce0e46ecc511c28f7ded156096376df6300a7e01

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73582cb7dd8262e5cc4407603ff4dbb5d3ed61f1a25aa4475f925da50a252eff
MD5 c2676c96e8cacd417d50150bd5931571
BLAKE2b-256 551fabc0011cc0658735a829a3d1d5f559b850235616f3ac6e70d2fdfe41b0f7

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be44ba9b5bfba3657beab1e7ed35612e8a50db54ed044aee5839f678b3833d03
MD5 7cb93027444326124b5f525000f4fe65
BLAKE2b-256 89efdc224c359acf7bef6627d25960e28281b0f7d891a4cfa995404e4f0db8fe

See more details on using hashes here.

File details

Details for the file PyQBDI-0.11.0-cp38-cp38-linux_armv7l.whl.

File metadata

  • Download URL: PyQBDI-0.11.0-cp38-cp38-linux_armv7l.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.3

File hashes

Hashes for PyQBDI-0.11.0-cp38-cp38-linux_armv7l.whl
Algorithm Hash digest
SHA256 d0b64237d48c051780bf82adaadf75f1a77b2a8bea6966f1d1f93d06698230fc
MD5 1d072a256e982b9f41262a16f26377bc
BLAKE2b-256 ec80f397d4b0ed77a6bf54978c6e23d175450aa9f5d2a5fee8cf4df21a7ffed1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page