Skip to main content

Recommender systems for Python

Project description

https://api.travis-ci.org/ssaamm/PyRecs.svg?branch=master&service=github https://coveralls.io/repos/github/ssaamm/PyRecs/badge.svg?branch=master

A Python Recommender Systems library

Installation

I have only tested on Python 3.5.1

pip3 install pyrecs

Usage

Loading data from a Pandas DataFrame:

>>> import io
>>> import pandas as pd
>>> from pyrecs import collab
>>>
>>> df = pd.read_csv(io.StringIO("""
...        ,Torchy's,Tacodeli,In-N-Out,P. Terry's,Casa de Luz,Koriente
... Sam,           5,        ,       4,         4,          3,       1
... Matthew,        ,       2,       1,          ,          5,       5
... Sarah,         5,       4,       2,         2,          5,       5
... Hannah,         ,        ,       1,         1,          5,
... """.replace(' ', '')), index_col=0)
>>>
>>> cf = collab.CollaborativeFiltering()
>>> cf.fit(df)
>>> print(cf.predict([('Sam', 'Tacodeli'), ('Hannah', 'Koriente')]))
[ 3.41666667  5.76851363]

Predicting ratings based on training data:

>>> import numpy as np
>>> import pyrecs
>>> from sklearn.cross_validation import train_test_split
>>>
>>> data = [[10,     3.4, np.nan, None],
...         [10,     0,   10,     5],
...         [np.nan, 1.4, 10,     3],
...         [np.nan, 8,   2,      5]]
>>>
>>> X, y = pyrecs.collab.matrix_to_dataset(data)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>>
>>> cf = pyrecs.collab.CollaborativeFiltering()
>>> cf.fit(X_train, y_train)
>>>
>>> cf.predict(X_test)
array([ 0.25,  3.4 ,  9.75])
>>> y_test
[1.4, 10, 8]

Tests

py.test tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyRecs-0.0.2.tar.gz (3.0 kB view details)

Uploaded Source

File details

Details for the file PyRecs-0.0.2.tar.gz.

File metadata

  • Download URL: PyRecs-0.0.2.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyRecs-0.0.2.tar.gz
Algorithm Hash digest
SHA256 7cc59bfbe53a7de6f894bdf9a035dc9b29dbe2263d3d8b4ef904e2dc6d85e92f
MD5 197b37da40d07aeba23b08199da7e0bc
BLAKE2b-256 bad5afd92ed03fc6782e785957a51b56f1dd623f6f2e694b9d094948bcb40f61

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page