Skip to main content

Recommender systems for Python

Project description

https://api.travis-ci.org/ssaamm/PyRecs.svg?branch=master&service=github https://coveralls.io/repos/github/ssaamm/PyRecs/badge.svg?branch=master

A Python Recommender Systems library

Installation

I have only tested on Python 3.5.1

pip3 install pyrecs

Usage

Loading data from a Pandas DataFrame:

>>> import io
>>> import pandas as pd
>>> from pyrecs import collab
>>>
>>> df = pd.read_csv(io.StringIO("""
...        ,Torchy's,Tacodeli,In-N-Out,P. Terry's,Casa de Luz,Koriente
... Sam,           5,        ,       4,         4,          3,       1
... Matthew,        ,       2,       1,          ,          5,       5
... Sarah,         5,       4,       2,         2,          5,       5
... Hannah,         ,        ,       1,         1,          5,
... """.replace(' ', '')), index_col=0)
>>>
>>> cf = collab.CollaborativeFiltering()
>>> cf.fit(df)
>>> print(cf.predict([('Sam', 'Tacodeli'), ('Hannah', 'Koriente')]))
[ 3.41666667  5.76851363]

Predicting ratings based on training data:

>>> import numpy as np
>>> import pyrecs
>>> from sklearn.cross_validation import train_test_split
>>>
>>> data = [[10,     3.4, np.nan, None],
...         [10,     0,   10,     5],
...         [np.nan, 1.4, 10,     3],
...         [np.nan, 8,   2,      5]]
>>>
>>> X, y = pyrecs.collab.matrix_to_dataset(data)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>>
>>> cf = pyrecs.collab.CollaborativeFiltering()
>>> cf.fit(X_train, y_train)
>>>
>>> cf.predict(X_test)
array([ 0.25,  3.4 ,  9.75])
>>> y_test
[1.4, 10, 8]

Tests

py.test tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyRecs-0.0.3.tar.gz (3.4 kB view details)

Uploaded Source

File details

Details for the file PyRecs-0.0.3.tar.gz.

File metadata

  • Download URL: PyRecs-0.0.3.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyRecs-0.0.3.tar.gz
Algorithm Hash digest
SHA256 9c9e3d049856e17e6fd19109b69640dfdb4800bf0273074b526747aad8a40e2e
MD5 d1c779163d049a94c6b4cc3b5050d9ae
BLAKE2b-256 7b159884994809d01b5a47546d25cb60cff981c3edb572b613877a10cbf82294

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page