Skip to main content

automatically formulate and embed ML models into MIPs with SCIP

Project description

Python versions Black PyPI

PySCIPOpt-ML

PySCIPOpt-ML is a python interface to automatically formulate Machine Learning (ML) models into Mixed-Integer Programs (MIPs). PySCIPOPT-ML allows users to easily optimise MIPs with embedded ML constraints.

The package currently supports various ML objects from Scikit-Learn, XGBoost, LightGBM, PyTorch, Keras, and ONNX.

Documentation

The latest user manual is available on readthedocs.

Contact us

For reporting bugs, issues and feature requests please open an issue.

Installation

Dependencies

pyscipopt-ml requires the following:

The current version supports the following ML packages:

Installing these packages is only required if the predictor you want to insert uses them (i.e. to insert a XGBoost based predictor you need to have xgboost installed).

Pip installation

The easiest way to install PySCIPOpt-ML is using pip. It is recommended to always install packages in a virtual environment:

(venv) pip install pyscipopt-ml

This will also install the numpy and pyscipopt dependencies.

Installation from source

An alternative way to install PySCIPOpt-ML is from source. First this repository needs to be cloned. This can be achieved via HTTPS with:

git clone https://github.com/Opt-Mucca/PySCIPOpt-ML/

and SHH with

git clone git@github.com:Opt-Mucca/PySCIPOpt-ML.git

After cloning the repository entering the directory where it was cloned, one can run the command:

(venv) python -m pip install .

Development

This project is completely open to any contributions. Feel free to implement your own functionalities.

Before committing anything, please install pytest, pre-commit, and all ML frameworks:

pip install pytest
pip install scikit-learn
pip install torch
pip install tensorflow
pip install xgboost
pip install lightgbm
pip install onnx
pip install onnxruntime
pip install pre-commit
pre-commit install

Source code

You can clone the latest sources with the command:

git clone git@github.com:Opt-Mucca/PySCIPOpt-ML.git

Documentation

You can build the documentation locally with the command

pip install -r docs/requirements.txt
sphinx-build docs docs/_build

Às the documentation requires additional python packages, one should run the following command before building the documentation for the first time:

(venv) pip install -r docs/requirements.txt

Testing

After cloning the project, you can run the tests by invoking pytest. For this, you will need to create a virtual environment and activate it. Please also make sure to append your python path:

python -m venv venv
source venv/bin/activate
export PYTHONPATH="$(pwd):${PYTHONPATH}"

Then, you can install pytest and run a few basic tests:

(venv) pip install pytest
(venv) pytest

How to cite this work

If this software was used for academic purposes, please cite our paper with the below information:

@article{turner2023pyscipopt,
  title={PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs},
  author={Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael},
  journal={arXiv preprint arXiv:2312.08074},
  year={2023}
}

Funding Acknowledgements

The work for this article has been conducted in the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF) (fund numbers 05M14ZAM, 05M20ZBM).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyscipopt_ml-1.3.0.tar.gz (75.7 kB view details)

Uploaded Source

Built Distribution

PySCIPOpt_ML-1.3.0-py3-none-any.whl (77.7 kB view details)

Uploaded Python 3

File details

Details for the file pyscipopt_ml-1.3.0.tar.gz.

File metadata

  • Download URL: pyscipopt_ml-1.3.0.tar.gz
  • Upload date:
  • Size: 75.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for pyscipopt_ml-1.3.0.tar.gz
Algorithm Hash digest
SHA256 84459540f20793df1d40831fce6a7eeb4b0eee3c53424c7baacb323ecf4d0794
MD5 c38dcc1485ee83251c9c497fda3da58a
BLAKE2b-256 de19cd60fa8f68bfdfae00fb5a58d93cb5eda44db2977fa30cb413b386ce8b93

See more details on using hashes here.

File details

Details for the file PySCIPOpt_ML-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: PySCIPOpt_ML-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 77.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for PySCIPOpt_ML-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2daf5144944e50db7604b6c74aaaf387dcc979feef04e2899982f4f6fde89fd6
MD5 f213e509f1f42fdd5d497544923f07fb
BLAKE2b-256 65890339fe8ebb1ac282d4bf0fdd1f3bc7cc801efea02ea5d0460d9a87a74069

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page