Skip to main content

This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.

Project description

PySRAG

This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.

Getting Started

These instructions will help you get started with using the PySRAG package.

Prerequisites

Before you begin, ensure you have met the following requirements:

  • Python 3 installed
  • Required Python packages (you can install them using pip):
    • pandas==1.5.3
    • numpy==1.23.5
    • scikit-learn==1.2.2
    • lightgbm==4.0.0

Installation

You can install the PySRAG package using pip:

pip install PySRAG

Usage

Here's an example of how to use the SRAG package:

from pysrag.data import SRAG
from pysrag.model import GBMTrainer

# from https://opendatasus.saude.gov.br/dataset/srag-2021-a-2023
filepath = 'https://s3.sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/2023/INFLUD23-16-10-2023.csv' 

# Initialize the SRAG class
srag = SRAG(filepath)

# Generate training data
X, y = srag.generate_training_data(lag=None, objective='multiclass')

# Train a Gradient Boosting Model
trainer = GBMTrainer(objective='multiclass', eval_metric='multi_logloss')
trainer.fit(X, y)

# Get Prevalences
trainer.model.predict_proba(X)
array([[0.36010109, 0.00913779, 0.01018454, 0.0413374 , 0.57923918],
       [0.26766377, 0.16900332, 0.13882407, 0.10029527, 0.32421357],
       [0.01113844, 0.0879723 , 0.00920112, 0.87940126, 0.01228688],
       ...,
       [0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
       [0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
       [0.08954213, 0.17430267, 0.041657  , 0.66829007, 0.02620812]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PySRAG-0.1.3.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

PySRAG-0.1.3-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file PySRAG-0.1.3.tar.gz.

File metadata

  • Download URL: PySRAG-0.1.3.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for PySRAG-0.1.3.tar.gz
Algorithm Hash digest
SHA256 76d9e8c7b5dc80acbdd7170340aa28ebc33756a8bd3699f44ed3b30264075a6a
MD5 b1427f43a031a1cf1d35a55faa3ec820
BLAKE2b-256 ffebe714426711180bc0fbbf51aec09592a8e66555f1cc652eac08d08b6ecbe8

See more details on using hashes here.

File details

Details for the file PySRAG-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: PySRAG-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for PySRAG-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 820ba9c50a7d0546d92a1f3c91301eb5407d4c39a97675d65ca96f990aa5bcf7
MD5 4dc9dc1035c7a795139bac204247a004
BLAKE2b-256 7acb27a0aa9aa7730272cef5a720fce3e89a9637d9ab67ce951fdd6bb268086d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page