This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.
Project description
PySRAG
This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.
Getting Started
These instructions will help you get started with using the PySRAG package.
Prerequisites
Before you begin, ensure you have met the following requirements:
- Python 3 installed
- Required Python packages (you can install them using
pip
):pandas==1.5.3
numpy==1.23.5
scikit-learn==1.2.2
lightgbm==4.0.0
Installation
You can install the PySRAG package using pip
:
pip install PySRAG
Usage
Here's an example of how to use the SRAG package:
from pysrag.data import SRAG
from pysrag.model import GBMTrainer
# from https://opendatasus.saude.gov.br/dataset/srag-2021-a-2023
filepath = 'https://s3.sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/2023/INFLUD23-16-10-2023.csv'
# Initialize the SRAG class
srag = SRAG(filepath)
# Generate training data
X, y = srag.generate_training_data(lag=None, objective='multiclass')
# Train a Gradient Boosting Model
trainer = GBMTrainer(objective='multiclass', eval_metric='multi_logloss')
trainer.fit(X, y)
# Get Prevalences
trainer.model.predict_proba(X)
array([[0.36010109, 0.00913779, 0.01018454, 0.0413374 , 0.57923918],
[0.26766377, 0.16900332, 0.13882407, 0.10029527, 0.32421357],
[0.01113844, 0.0879723 , 0.00920112, 0.87940126, 0.01228688],
...,
[0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
[0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
[0.08954213, 0.17430267, 0.041657 , 0.66829007, 0.02620812]])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file PySRAG-0.1.3.tar.gz
.
File metadata
- Download URL: PySRAG-0.1.3.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76d9e8c7b5dc80acbdd7170340aa28ebc33756a8bd3699f44ed3b30264075a6a |
|
MD5 | b1427f43a031a1cf1d35a55faa3ec820 |
|
BLAKE2b-256 | ffebe714426711180bc0fbbf51aec09592a8e66555f1cc652eac08d08b6ecbe8 |
File details
Details for the file PySRAG-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: PySRAG-0.1.3-py3-none-any.whl
- Upload date:
- Size: 7.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 820ba9c50a7d0546d92a1f3c91301eb5407d4c39a97675d65ca96f990aa5bcf7 |
|
MD5 | 4dc9dc1035c7a795139bac204247a004 |
|
BLAKE2b-256 | 7acb27a0aa9aa7730272cef5a720fce3e89a9637d9ab67ce951fdd6bb268086d |