Skip to main content

This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.

Project description

PySRAG

This Python package provides tools for analyzing and processing data related to Severe Acute Respiratory Syndrome (SARS) and other respiratory viruses. It includes functions for data preprocessing, feature engineering, and training Gradient Boosting Models (GBMs) for binary or multiclass classification.

Getting Started

These instructions will help you get started with using the PySRAG package.

Prerequisites

Before you begin, ensure you have met the following requirements:

  • Python 3 installed
  • Required Python packages (you can install them using pip):
    • pandas==1.5.3
    • numpy==1.23.5
    • scikit-learn==1.2.2
    • lightgbm==4.0.0

Installation

You can install the PySRAG package using pip:

pip install PySRAG

Usage

Here's an example of how to use the SRAG package:

from pysrag.data import SRAG
from pysrag.model import GBMTrainer

# from https://opendatasus.saude.gov.br/dataset/srag-2021-a-2023
filepath = 'https://s3.sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/2023/INFLUD23-16-10-2023.csv' 

# Initialize the SRAG class
srag = SRAG(filepath)

# Generate training data
X, y = srag.generate_training_data(lag=None, objective='multiclass')

# Train a Gradient Boosting Model
trainer = GBMTrainer(objective='multiclass', eval_metric='multi_logloss')
trainer.fit(X, y)

# Get Prevalences
trainer.model.predict_proba(X)
array([[0.36010109, 0.00913779, 0.01018454, 0.0413374 , 0.57923918],
       [0.26766377, 0.16900332, 0.13882407, 0.10029527, 0.32421357],
       [0.01113844, 0.0879723 , 0.00920112, 0.87940126, 0.01228688],
       ...,
       [0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
       [0.02176705, 0.03438226, 0.01555221, 0.11300813, 0.81529035],
       [0.08954213, 0.17430267, 0.041657  , 0.66829007, 0.02620812]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PySRAG-0.1.4.tar.gz (113.9 kB view details)

Uploaded Source

Built Distribution

PySRAG-0.1.4-py3-none-any.whl (117.9 kB view details)

Uploaded Python 3

File details

Details for the file PySRAG-0.1.4.tar.gz.

File metadata

  • Download URL: PySRAG-0.1.4.tar.gz
  • Upload date:
  • Size: 113.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for PySRAG-0.1.4.tar.gz
Algorithm Hash digest
SHA256 5252cc162312c4a6825d73bf5963cb655cfa63505b12893a6d9dae9a85d244e1
MD5 094660e3beda79cd12ecd2d71ce1e7e2
BLAKE2b-256 c9bd58aa96818450cf1b9859a2a587c48f4fbc155155db10659fde9c9d873e27

See more details on using hashes here.

File details

Details for the file PySRAG-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: PySRAG-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 117.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for PySRAG-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 13beeef9f6c59f3645d048c8b6065ad78305c59147ab072045668fe52537d6bb
MD5 2c71fb109656fae4024303cfae147407
BLAKE2b-256 6ce04e36114d016c3de93c68fb1d7b7e05f9a29744470e6ccaecfc5222d7898b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page