Skip to main content

A Python 3 package of statistical analysis and distributions

Project description

PyStats

PyStats is a Python 3 library of statistical analysis and distribution functions with simple R-like syntax, scalar/list input/output with OpenMP parallelization.

Contents

Distributions

Functions to compute the cdf, pdf, quantile, as well as random sampling methods, are available for the following distributions:

  • Bernoulli
  • Beta
  • Binomial
  • Cauchy
  • Chi-squared
  • Exponential
  • F
  • Gamma
  • Inverse-Gamma
  • Laplace
  • Logistic
  • Log-Normal
  • Normal (Gaussian)
  • Poisson
  • Student's t
  • Uniform
  • Weibull

Installation

You can use pip to install this library:

pip3 install pystats

Alternatively, you can also clone this repository and install the plugin manually using pip:

$ git clone git@github.com:marcizhu/PyStats.git
$ pip3 install ./PyStats

After that, you can just import pystats (or do from pystats import * if you don't want to type pystats. before all functions) and you're ready to go.

Documentation

Full documentation is available online:

Documentation Status

A PDF version of the documentation is available here.

Syntax and Examples

Functions are called using an R-like syntax. Some general rules:

  • Density functions: pystats.d*. For example, the Normal (Gaussian) density is called using
pystats.dnorm(<value>, <mean>, <standard deviation>)
  • Cumulative distribution functions: pystats.p*. For example, the Gamma CDF is called using
pystats.pgamma(<value>, <shape parameter>, <scale parameter>)
  • Quantile functions: pystats.q*. For example, the Beta quantile is called using
pystats.qbeta(<value>, <a parameter>, <b parameter>)
  • Random sampling: pystats.r*. For example, to generate a single draw from the Logistic distribution:
pystats.rlogis(<location parameter>, <scale parameter>)

The library also supports lists as input/output:

  • The pdf, cdf and quantile functions can take list arguments. For example:
norm_pdf_vals = pystats.dnorm([x / 10 for x in range(-10, 10, 1)], 1.0, 2.0)
  • The randomization functions (r*) can output lists of arbitrary size. For example, the following code will generate a 100-item list of iid draws from a Gamma(3,2) distribution:
gamma_rvs = pystats.rgamma(100, 3.0, 2.0)

Additionally, most parameters have defaults to most common values and named parameters are also supported. For example, to generate a single draw from a Normal(0, 2) the following can be used:

norm_draw = pystats.rnorm(sd=2.0)

Examples

More examples with code:

# Evaluate the normal PDF at x = 1, mu = 0, sigma = 1
dval_1 = pystats.dnorm(1.0, 0.0, 1.0)
 
# Evaluate the normal PDF at x = 1, mu = 0, sigma = 1, and return the log value
dval_2 = pystats.dnorm(1.0, 0.0, 1.0, True)
 
# Same as above, but using default values and named parameters
dval_3 = pystats.dnorm(1.0, log=True)

# Evaluate the normal CDF at x = 1, mu = 0, sigma = 1
pval = pystats.pnorm(1.0, 0.0, 1.0)
 
# Evaluate the Laplacian quantile at q = 0.1, mu = 0, sigma = 1
qval = pystats.qlaplace(0.1, 0.0, 1.0)

# Draw from a t-distribution with dof = 30
rval = pystats.rt(dof=30)

# List output
beta_rvs = pystats.rbeta(100, 3.0, 2.0)

# List input
beta_cdf_vals = pystats.pbeta(beta_rvs, 3.0, 2.0)

For more information on default values, parameter names and other examples, check the documentation.

Credits

This library uses kthohr/stats for the statistical distribution functions, kthohr/gcem (a dependency of the previous library) and pybind/pybind11 to generate the binding code.

License

Copyright (c) Marc Izquierdo 2021-2024
This library is licensed under the MIT License. See LICENSE for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystats-0.1.1.tar.gz (5.3 kB view details)

Uploaded Source

Built Distributions

PyStats-0.1.1-pp310-pypy310_pp73-win_amd64.whl (133.9 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (219.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (159.4 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyStats-0.1.1-pp39-pypy39_pp73-win_amd64.whl (133.9 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (219.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (159.4 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyStats-0.1.1-pp38-pypy38_pp73-win_amd64.whl (133.8 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (219.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyStats-0.1.1-pp37-pypy37_pp73-win_amd64.whl (133.8 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (219.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyStats-0.1.1-cp313-cp313-win_amd64.whl (134.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

PyStats-0.1.1-cp313-cp313-win32.whl (116.7 kB view details)

Uploaded CPython 3.13 Windows x86

PyStats-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp313-cp313-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (218.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

PyStats-0.1.1-cp312-cp312-win_amd64.whl (134.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

PyStats-0.1.1-cp312-cp312-win32.whl (116.7 kB view details)

Uploaded CPython 3.12 Windows x86

PyStats-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp312-cp312-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (218.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

PyStats-0.1.1-cp311-cp311-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

PyStats-0.1.1-cp311-cp311-win32.whl (115.9 kB view details)

Uploaded CPython 3.11 Windows x86

PyStats-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp311-cp311-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (217.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (218.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyStats-0.1.1-cp310-cp310-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyStats-0.1.1-cp310-cp310-win32.whl (116.0 kB view details)

Uploaded CPython 3.10 Windows x86

PyStats-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp310-cp310-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (217.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (218.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyStats-0.1.1-cp39-cp39-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyStats-0.1.1-cp39-cp39-win32.whl (115.9 kB view details)

Uploaded CPython 3.9 Windows x86

PyStats-0.1.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp39-cp39-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (217.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (219.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyStats-0.1.1-cp38-cp38-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyStats-0.1.1-cp38-cp38-win32.whl (115.9 kB view details)

Uploaded CPython 3.8 Windows x86

PyStats-0.1.1-cp38-cp38-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp38-cp38-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

PyStats-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (215.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (218.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyStats-0.1.1-cp37-cp37m-win_amd64.whl (132.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyStats-0.1.1-cp37-cp37m-win32.whl (116.5 kB view details)

Uploaded CPython 3.7m Windows x86

PyStats-0.1.1-cp37-cp37m-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp37-cp37m-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

PyStats-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (235.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (231.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (160.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyStats-0.1.1-cp36-cp36m-win_amd64.whl (132.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyStats-0.1.1-cp36-cp36m-win32.whl (116.5 kB view details)

Uploaded CPython 3.6m Windows x86

PyStats-0.1.1-cp36-cp36m-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

PyStats-0.1.1-cp36-cp36m-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

PyStats-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (235.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

PyStats-0.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (231.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

PyStats-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (160.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pystats-0.1.1.tar.gz.

File metadata

  • Download URL: pystats-0.1.1.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pystats-0.1.1.tar.gz
Algorithm Hash digest
SHA256 d011ba8a56333a97d5843b6bb3346aef43116e0c18b232cb4f90de76336662e4
MD5 933344019cfe8dc108b550a6013fe18d
BLAKE2b-256 678947ced1809b7679903bc49bb25194becfd9e7d1bdf4a29dd26d7285fc249b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 968121d64b37deddf7b6084b9e866ede1b4be20c0f0724302a0a75f295eb034e
MD5 11e6ad921bd27e7fc572ac8c028c6db6
BLAKE2b-256 3f193b10849c01b72a785c182abcc552d4d6b1d0f933d261f3101fb50bab82c8

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b751512d0aea3c5d72c57adb0737aa96e3085e19e0fcb73114b4d3e7917b19f
MD5 13883f320861b46ca8aa0ada7b4fbdd1
BLAKE2b-256 d662c10da3c1338587cd6a36e2cad462f4fb07a516fc72d5a4c5cef38761adac

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c18e24111d7cab40cba27bf2b7fbe659d439a5acd0668fa6193110c396c0e423
MD5 c60f97609f651c7fbbb2367e83067464
BLAKE2b-256 f7bed6dabce4d921a6cf9de0394c5c2525744cc1fb8e7b06f44ef3c3ab0105b5

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e54fa7c5006246f828181a943e4dafc6fb9b4f9068cae23e6612999c0cd19a10
MD5 2901b5f8ae327b15284acfdfd9141845
BLAKE2b-256 a63a1f2be6a7385975f341a1b5ba5a7bbe91aa3dbde680ae63da37eb2d333198

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d74637ebda2dd4c7c6eafe0d58a5ac1d1761de18e260d0246eb4d451c497b8d8
MD5 2a6aa59f5108a8d9408e31aecdc0ef2e
BLAKE2b-256 47afaed5547e1f0e1af883d3dbf387e3904b789e6c00cc48f48fab52ef86e40d

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c61630fadc76242acd56e7124deb80915b84bdb337290714edb16410523356b
MD5 9b42015869f270ad7cbdede994ae18c4
BLAKE2b-256 fa7a5a7396750b4303155e9fc56d4dc0172c663e6304c8ec0da25c1ee1930221

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba24be860e867468ed72110b42deb426fe3a2f903b3f93d8405ba260477b99bc
MD5 ad5746b38c1f18b5cd647f702db0381f
BLAKE2b-256 acb1113a7f1dd91a749127b58d5a514957e130457f60e3fcb3f88c5689b9f67f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ecfc675237083582226095186edf31f8ace5a2a32e38409ae8c65d2149af9415
MD5 7c0746986f1df76117ca8ed34e040dfc
BLAKE2b-256 91405fedbf0692aaaeb64a847304d82d5940c06daf26725172a959253970279f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b50a62da25674c4354c354e076094e778b5fd38a4f4e662bc587522726d283ec
MD5 7ba29cfa751cc9e0b5ff3fa6d8a20b17
BLAKE2b-256 ce9f4fd92f5fefb70022371100b242968b5018f928edcfbdb0baf59df729bbf2

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59de9bbd5617fee5fe2c1620285ccc2cd8d9f43dcbfe9ac37a288df8eba636bf
MD5 81e13482ff1a80a6230ec67b659f34f5
BLAKE2b-256 572c6886ca17a556fcd16b87faf3279fe6c42cdb98f34d9f31b9b2232caff00a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d204daaaad2625d71093719e4b1a48b335533006f46ad7faf509a47b86483b32
MD5 9ab0bf890da2ba09ebfc8705dd0a7f89
BLAKE2b-256 747402be885860e4ac87831a04df24485a2529f6093675b9ec256d96f90f4bad

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de9d09637a044ec4a8658c1725b7e44a03a653d9c5c3e52f60f5bb4b0c3197ec
MD5 d0225d9832c9add58a8fe4b06e0fe73c
BLAKE2b-256 6574587fc8887b14be97ac2aed5f3860644020a418f09a5a92f5cf6127d01970

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7d277eb3aeb6dfe4db92073cdf26f30e458210b9dfaa096a2796b8a85258f991
MD5 f91a5fba0973a2040407aa520f67f9b1
BLAKE2b-256 d8328131531344a3ca77f73edfc4dbbaee0464078c201114b5bba3ac3c36e3d7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47746f7df8af7ee05dd3f98092f6288121152b97133494651c6de2b8b975f82b
MD5 99e6600ea213f8010c824684acb81c21
BLAKE2b-256 4c54ebe70e426174071e48beb5dbdda2a4843e909ddf6ba4f96615c70adff6c7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b62d2d75ed9e940ed1f6f54aa4fe829fd8b1e6152f1516a089bd1010575cfba6
MD5 b2eaf47aaf3f2d327bd713ed025788af
BLAKE2b-256 b62836f6d076bea4c46ed4294ed80b2e3066b9de5f8affd0a311c8eed2c2e038

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f70b3326d690ef139200f660b0904affb1e2094d99136467ddec1b8189d56c0
MD5 39092442c31c199190fa10bf74272c5b
BLAKE2b-256 ac3cea1e8f37993f89f968671c380f4a0f6242f51dd50ca90cff163f58912f89

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 134.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 881bcedecf81a7976d90305d7b49db6f4d19515dcf6cbb5f561c7ab9b15f0c18
MD5 8738726653d22711229e5ce3990e8ca4
BLAKE2b-256 5e12e6780e91aeca34350abb2ad839ecf00e359eaf4c5515f6d8040527425a0c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 116.7 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 cc6fd86e9ecacf604c9ffb78dbfd865e2b53e2798e63d74fdab6f084ddc8cdf8
MD5 716af3f8fdb769c7a10b7b54d38a08d2
BLAKE2b-256 5dcd73aaa3f6be52b0820c7b8b4eb03957fdc6aea67cbe6b89544b30c3835f1f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 45a21237573e7f61f65f968b0f12a0cb1d8e73b081546a4396a5a7d50f130d15
MD5 3f7034bd8b7b09c33bf78b0e95510187
BLAKE2b-256 16b38131507ce3ef6554c7d105fd0a0d6d83e6f5d14ba50d122c4d4bfb0326f1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 24d1218b49f96158ebf912f3e917b77f9f1f3c219022b602ddc8be86f6ecd084
MD5 bc7ee9f129daae1a8ff81a0862ef388c
BLAKE2b-256 cbae9d7f939a017e3f5dcc26ffc7907ea3fd0a39c884f1b1f6cf9a949d119606

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16f5df7f80ed471bdbaacbf052797c2ac264926fad16702eebd9fef82ddc8fe2
MD5 ebb9af95b731faf5041ac43a13348e7c
BLAKE2b-256 596ab03ddb366fb14fa8218be04eaaf4862344323d9fa834fbe7b2eda4e2b7cc

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b2336f169b8bc58490b3f48c734a737367f07529ff30b3f241fe4b7b741514fd
MD5 cf86934f74150244c88fa84eba91a0f6
BLAKE2b-256 61b67cd8afe36f7e2ffd9c5f0437b5497d69ca9a2afec73f9bce545285e6fe6e

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 701f53f1fc92f7ace9fa4c739ae6a268787c3b61380e2219560425d8c154940b
MD5 1adbb28885fa002b2455d52dadbe8684
BLAKE2b-256 deb8b21a58aa23f59181cace25a11942536d89ccaa08435dbbdb3e0de8b99ee0

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 134.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 33147920bb60d99098427f741840b25aabe42f6ab2d0d328a430ee9480125e1a
MD5 da981010ea4477e1861654127387a290
BLAKE2b-256 0ab8fb04e08957dc17809a7204f0254660fb002608c570e6613c6cce3036234b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 116.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e18a5b44b3b2f72153863fe7459025f9c31320ac37a1fa65e624287d881df670
MD5 90e2a8271d1f1cb43aa85829da5085ce
BLAKE2b-256 34be4eae9b9d5889449bc4af25bd9b45d8c1437d556a98c866cb06f643d379ce

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6cba5546bb44931576eaed6219a8b4597d8e28002b3bb73132fc41f35211ed0c
MD5 a6731bb455568c05bbac51dcd1c87fec
BLAKE2b-256 c000da608e9241d2f534fe5821cf8ff7c20a8db5f7f2df7a62bae18db485d96f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a4a3686ec340badd014acc6e8a8165fe1d77a6dd91a3bea47d19183118c29655
MD5 ec43e8f201e23aab00c118871e7edb77
BLAKE2b-256 91993d1301f293ce4d557b0844ac831fb440a19d620b5274db3dd57053a9f37b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7507c0be86cc7dd3f0ef4eed40b63fef95111e68a510db92786ac890d6c351bb
MD5 da029f9b961eb7cb191fcb24bfbc78ff
BLAKE2b-256 6cebe233ce3f1002b16f0377bedf94e29887200f41ca3654009f54b4b2aacff9

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b709598e8dbbc86c98e7c91fcda2d4f5b7a1e0d474397b2136c9263d5163f58
MD5 d5f6d867b338a73624d715734401801e
BLAKE2b-256 6b8914925bcf31a1d7d0894ff354f2c5687e396d133c02bc2900c3b456c5f165

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e802ffa003d2b66c2daf552bc662eb44b1ee3754afbf1555250ee53a898d9941
MD5 bae393cc8c8710300c4c7f11c319c6ea
BLAKE2b-256 ff0d2e1948a96bb2699bb5e4192daef3d482b88b805c0674775783d0f667c42a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eebeb20608baa7f49a67b1d081c754c20c8c71a4f6f2e397440702a6a72c46ee
MD5 3cdad7085681e68f98db86e08f238955
BLAKE2b-256 ecb5ce5977a853da8b6be3edf2470a28c112c07e53a8964e1abd176a697525b5

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6d0c94614d6133890759adfdd2fb53703251ddbdd0e2f24b682985cde6fcf362
MD5 353ed9c58829b378ca68e6b05aad2d7d
BLAKE2b-256 0131c8b8842557514482515efaf166e9d77eee8a21031b568358d919c0ff35be

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9071bb75adbe9b3ed85ddc971317dfd7bd06caf50298707567c4cee18aef8367
MD5 74952334e2f8789e53dd1906699ebdc7
BLAKE2b-256 40d6a9ee06bf501d079d2f2e751223017d85c24bb384fb6a8a4916a0bbeefcb9

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f5c4bdf46463d3e3a035734cb25db30938d20030abf06022a7448bbaf98c2373
MD5 41fbc4a016c35a03f502776837bc1819
BLAKE2b-256 fa325de09450b119233768336ce73e6d83421b9b92c19522eb70d5ca2821b45c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff1439d7a6851d4f6d32ad8663e039cda0b611b7320bea7ad58a8a8e0d2cb72e
MD5 3e7986f0edfb9dbe8adb4bf5ff4fea18
BLAKE2b-256 5755a70c6b8756ce721c0cea0e314c7e1540d9326a9c3308db527149beef35f7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e81c70f6d2f6f6d64c32091d86d9fb1d90fd174968af3ab745165b986bedcde2
MD5 a010ada79c4e763577b941761d31ba38
BLAKE2b-256 78dded2971c661550b87216e2920a48350402a9013beb7c38002b21f0087e508

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d07c7ffb1ed653768726d2a98d1ab0f4c2ff9257d0022964604cf63addc9a61
MD5 bbee279bedda74353f2691c4c79df8ca
BLAKE2b-256 9165d0838718b4e24b47371935f1876a6bbfefb3292eaf202ca90d49eef58115

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc5c9dea2d7f50e9dbd63eab90bdf19cd06de1207e83e29814b5b494a3a627bc
MD5 d8619c8a120f217cc0073fdc50243ac2
BLAKE2b-256 e3bfdbf7bb9adcea9008d384ec52392c4da70d1223b3bda9a83b68a3a5310615

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 116.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c02af6f2f03323be3d9d2765fa7b7234daf10c5bcc99a9bb75f1dcb6070ee3ea
MD5 a0696b8c77ec9c6643ff5dfb2b6bd27e
BLAKE2b-256 a85fca66b42b544d9a74d7853b7e7f7187a4ec8c89928437ac5242d888240935

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ea92a5d392ada5130f4e597eaca17646642adde001f87800aad6cc33fc0a4461
MD5 5c63e286d16026e350f4f1ca8891b247
BLAKE2b-256 59ef143f59ce047836738dee028793b56de62a21a34f2f98e4b15859819ac60a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 139b28dfcf84fc127e78d4c92838af1d826d2e42b8a869d18afc5995c2bcff82
MD5 10d66f068e0800f5d571ab92af9b1a37
BLAKE2b-256 4ff6fc950e2d63a72fbd1a99492e127769c22735eab30463eb985334aaa6d26f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53e71171e7de8981094d6caee0946916e716645ed79ac9f956d80058dd4e5b04
MD5 a93758fb414ffa3586b89d5349ee5db2
BLAKE2b-256 744c17bfbcfac1714da8208142566b2bdc4dd3d77bce32276f28afc8146bb627

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9fc7d602b842874fa401bceed8f321d2628eb1fdef527936b0ade02d1c7e152a
MD5 2c3d5eb4f742ee04993adb7e41162db7
BLAKE2b-256 e51a88a065ab6c25ccc8a2ea627197530bd634dc490bfe20dffd293b89298333

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f220cf3b77089a0222bed873a226c38f8628ebdfe474798a797ac175450bc38
MD5 83598b0c817c72eb4f6c715c3aa43614
BLAKE2b-256 795cafed00b47e11609ef647e5fb357b4f1883a001dc683984e15a4b53f32cf6

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 96aaea611794a8b0db4dfc8852ca081102bcb3074f15ea1ce5a7617cb38b1dc5
MD5 2204d3fe0b31ebdd761550e99c561ba3
BLAKE2b-256 71dc9bf933f457bdeba7ef0eaa8da54ab04f7ab3b288dd415e14c00675712870

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 deb88d329065ef6011e36136ab93c724e16eb5cf7d0116cab70a68290c772507
MD5 a12b3285c96e5a11d359159c9a3b8917
BLAKE2b-256 3c460e96165815877ead715f955ef987986ab7b2bec83efd3dbfc744c0868dc2

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9bb0ef27c2bc72f85df160add2522bb74c204957b714acdd8c62dcc8ff7caf82
MD5 d3deaf097ad0670677b1e1c26ebcd416
BLAKE2b-256 e4a02a41a1beff964e471392128dd6253c8204d1dd8cb2095deb9e400f723a03

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 08176ba9086f4a1cf8e6ddd08445299de532bdf1c42d00799aacdafc5f7f8a9b
MD5 f1b632f3f0202139784092c26677077d
BLAKE2b-256 a54b25e82e4ffe41c1ad2e1a0121034dc3e6a6b23b1b3867d1216174ed7027c2

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6efdef49d5bd24caf304c41322361bfbcd153ddd5d4db6e337a123beab8311b7
MD5 168f2b0e06f647f131442d357bbda530
BLAKE2b-256 61119c72eb62be7ef664ec210e80662e6eae52a49d4f119704ce0f70787b41e7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d71521015f544855849421932f1f8d09e46a0e5337f18e0624f869da973ad985
MD5 12e6cae616bb749a2ac22a4d1fa6b52b
BLAKE2b-256 17c82e4e2fde3022fd62099b329b7b6d5a50a596771454fc56921234478ce8da

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4396f0cbab39b6b9f349779a9257570a984aeb94c974c0342f8de4f60b2a7413
MD5 f2741ddf54cb32fb78206285f6257a1d
BLAKE2b-256 7cd4af996bb8e66c176393b5a1e8434f5a72ebc15dab0cc33a743b3b1ed9e656

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b0cf7098947b175ff2e814f272c6e1945ac822194c774cd03bfd80a140788919
MD5 b28edb9c272eebb5b9d031f9cc811dd1
BLAKE2b-256 835f9b073068855a992881dc93f05aeb96b476fb9e63b898a15d63f55ca4f77a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 643797ace0d7bcc692969befe61af5b3dc3efd98322e7735752ab620f5abccdf
MD5 b4a439148bce62fd0cd53a76ab8ec0fc
BLAKE2b-256 2b3418348df495fee8647ccd65301e827bcad9b68dbc42dd6c14249d3a887011

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e3400c0cad428799e0fdf3a23645d0efc263acc2ff540fac4c7d48c1519360e5
MD5 22ea58de252c141c23d7b1084d817493
BLAKE2b-256 343226b9d97a96f86e13e5d90e821d5ba0d080d86d99f863af4f992ae70dea31

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 28ff2f2d523e7a567b9c01cfb24c8a010853785ef7c0d6ec4aa69baaf0347052
MD5 3ea9400985d08fb92447d5b673a04fd5
BLAKE2b-256 e3cdcb580c2192a2117a7766e99f6dcb8d37975016e2963347831b82a12da75f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c23d8b9b03cd6a32c2f464d50e940a354834ebc6cce4431f8989d2a13b5429f0
MD5 73d88ba96ff719c2196e1648d7840fd5
BLAKE2b-256 94cf65686cb64e7b731dae1ff14500901faa2c71ede5c01a71c19d8315bd5688

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 31a47cf04238d742e862688e69a466d268755ee83215dc84db382636d279bf8c
MD5 2bb8f36095d4f6cc85424b5a86e0f4dd
BLAKE2b-256 b1d37d026b7b4c60beb94fff9d2a210eca8dcb07bdc128c50194f5954e851776

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d2208aead4c332e6e246fb21548acb746866ea1a3eb089097d2444e110c5b39
MD5 dec231466f09e120f42b32c4a043c94f
BLAKE2b-256 550487f43166645f9276cbfe1ba2ee3cd7e049402d711d670fd0687b276a3f47

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5a1d937d4556bcb368f5d2a5ec87fd47030dde29ed58754d0cd776f87108bd58
MD5 4825a40d1006f1403b271f307259d164
BLAKE2b-256 ad82a4a6c016c644872bb6e7d95ff8cb96f0d8fa58dc12f480929b0e8ebeb723

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 116.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b86b4e95ee920c175685c6bdd39ae735376d6f0c5344db82dd553b3b2915fa0d
MD5 d011b15c6c88f48fadd30e95adc4a73a
BLAKE2b-256 f7c8bd9e19b260ff5f0b04b8be8d5bf150471544a487bdbb18e892debe68bfa1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c16be5b7bbd3cbab78d1dd33ec8c093643a2a6c33122925ae3960857086564d3
MD5 7dacd82457d2a51351cf776e2ebe9e4f
BLAKE2b-256 9f10d9a5e3d77731a52e8bb9319708126e54357a7fa14ad93813870fb393f5fd

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c3ff9c8918f54362f5b8b0bd6e702595e5384d9b2cece65b59d111d7582a89ab
MD5 53ce98fd66554f745d4557ab63cdd81e
BLAKE2b-256 4f012b4e23a7ab720a23304ada0443a88f07b16fa5724f74a5fcdd272dd80919

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e131547507d46a27a109aedc73d83d7b6d5fd29c1d1671cb4007eab563dc43ec
MD5 a9463e993420ff991253e852fb5f37a9
BLAKE2b-256 1c99720491cc3c18ebf12c7a1325c82d1945795c4cd38c696ea714471fe85592

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e272b8ae34f4415ea37ac584b9a5c71233e609b6eade440c83002b31af754d6b
MD5 8fba8502b895d402050a8bb5f36de53b
BLAKE2b-256 5e01f57ed7bde0e7aa54c8d71f65f9093e7200a0d75ba0344cc565fd458903be

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c44ad922b7b98623eaf92dae67b66eef282eee2a76329ad840482e445b307380
MD5 9e2b9fb8412ef4c2abe2cdf415691194
BLAKE2b-256 2b4deb2908e88760c7b99be821a50e85d1afe75ece8870f059ac04b07819a705

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f034a2a8341600ae1d2f6dc4f7c7f5a677a9fdb6098058019dfb73cbf436a147
MD5 aa9d46b077b08debb446dc783c732ca0
BLAKE2b-256 1e248274e9fdbdce0858a9e203c6724695b3f100dc1081f31f1c5d9a1a1f2ad4

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyStats-0.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 116.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2d311a364fc6904333e9878e62fefd19a49f8fbf1a0771f50e378f436fcf91de
MD5 736453c0e09b67d34133bca19a7523dd
BLAKE2b-256 acdcb2b81d954691eb433669385f7c9a87afe4cb048223e72f74c7df6a8325fc

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9a9a29df16b831abad23d15f2175ca97ee867c6e8c9be1882ccd455a24e86e38
MD5 5ab0e02582e29f8bce3b4c683f4d79f4
BLAKE2b-256 c896ac24ef4cd4629de5c07b46be6d88e2ee4614461d47f587f4a770ecfe5b8f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dca8c957677eec48d0c946111d65de2e0f8532f47cbcf1f6bddc24765d96babf
MD5 bbe98fe59e8d8aff8bc35dd8bba27a66
BLAKE2b-256 d6757e1043c952a4ab146c63c9f7aaf253c8d5edd2c1a6458abfeb10081bf376

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de8c81ce5e0cd96c831b38b1d9c633d03ae61adf4a756186ee117ce7d0ab11b3
MD5 29efccfec4cd184743e2d73d78c58621
BLAKE2b-256 b1fe717dc6f2c3d63163bcb605690262a2116983d71182650942e0db221166a3

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ac1198660e945bfeef2efd959a6afafbce023880fc256a73ccad5242c1904f8
MD5 6bd33215ee02cd02ec10b69490454dad
BLAKE2b-256 35b64916eba98361b88133187201c6ac0bc5bf410bfafbed1c7731d3f31dd66b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea9d75d76e23ce758d4f9e60bff43bccb2fe1a03ce4d20086128f035b1771c5d
MD5 8bc5623294d746becf2ab4b1f56c09a0
BLAKE2b-256 933eca09a495be0605ae59f0ff86e4289553dfb96c8be7367da6dc5738f5882b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page