Skip to main content

A Python wrapper of libjpeg-turbo for decoding and encoding JPEG image.

Project description

PyTurboJPEG

A Python wrapper of libjpeg-turbo for decoding and encoding JPEG image.

Prerequisites

Example

import cv2
from turbojpeg import TurboJPEG, TJPF_GRAY, TJSAMP_GRAY, TJFLAG_PROGRESSIVE, TJFLAG_FASTUPSAMPLE, TJFLAG_FASTDCT

# specifying library path explicitly
# jpeg = TurboJPEG(r'D:\turbojpeg.dll')
# jpeg = TurboJPEG('/usr/lib64/libturbojpeg.so')
# jpeg = TurboJPEG('/usr/local/lib/libturbojpeg.dylib')

# using default library installation
jpeg = TurboJPEG()

# decoding input.jpg to BGR array
in_file = open('input.jpg', 'rb')
bgr_array = jpeg.decode(in_file.read())
in_file.close()
cv2.imshow('bgr_array', bgr_array)
cv2.waitKey(0)

# decoding input.jpg to BGR array with fast upsample and fast DCT. (i.e. fastest speed but lower accuracy)
in_file = open('input.jpg', 'rb')
bgr_array = jpeg.decode(in_file.read(), flags=TJFLAG_FASTUPSAMPLE|TJFLAG_FASTDCT)
in_file.close()
cv2.imshow('bgr_array', bgr_array)
cv2.waitKey(0)

# direct rescaling 1/2 while decoding input.jpg to BGR array
in_file = open('input.jpg', 'rb')
bgr_array_half = jpeg.decode(in_file.read(), scaling_factor=(1, 2))
in_file.close()
cv2.imshow('bgr_array_half', bgr_array_half)
cv2.waitKey(0)

# getting possible scaling factors for direct rescaling
scaling_factors = jpeg.scaling_factors

# decoding JPEG image properties
in_file = open('input.jpg', 'rb')
width, height, jpeg_subsample, jpeg_colorspace = jpeg.decode_header(in_file.read())
in_file.close()

# decoding input.jpg to YUV array
in_file = open('input.jpg', 'rb')
buffer_array, plane_sizes = jpeg.decode_to_yuv(in_file.read())
in_file.close()

# decoding input.jpg to YUV planes
in_file = open('input.jpg', 'rb')
planes = jpeg.decode_to_yuv_planes(in_file.read())
in_file.close()

# encoding BGR array to output.jpg with default settings.
out_file = open('output.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array))
out_file.close()

# encoding BGR array to output.jpg with TJSAMP_GRAY subsample.
out_file = open('output_gray.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, jpeg_subsample=TJSAMP_GRAY))
out_file.close()

# encoding BGR array to output.jpg with quality level 50. 
out_file = open('output_quality_50.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, quality=50))
out_file.close()

# encoding BGR array to output.jpg with quality level 100 and progressive entropy coding.
out_file = open('output_quality_100_progressive.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, quality=100, flags=TJFLAG_PROGRESSIVE))
out_file.close()

# decoding input.jpg to grayscale array
in_file = open('input.jpg', 'rb')
gray_array = jpeg.decode(in_file.read(), pixel_format=TJPF_GRAY)
in_file.close()
cv2.imshow('gray_array', gray_array)
cv2.waitKey(0)

# scale with quality but leaves out the color conversion step
in_file = open('input.jpg', 'rb')
out_file = open('scaled_output.jpg', 'wb')
out_file.write(jpeg.scale_with_quality(in_file.read(), scaling_factor=(1, 4), quality=70))
out_file.close()
in_file.close()

# lossless crop image
out_file = open('lossless_cropped_output.jpg', 'wb')
out_file.write(jpeg.crop(open('input.jpg', 'rb').read(), 8, 8, 320, 240))
out_file.close()
# using PyTurboJPEG with ExifRead to transpose an image if the image has an EXIF Orientation tag.
#
# pip install PyTurboJPEG -U
# pip install exifread -U

import cv2
import numpy as np
import exifread
from turbojpeg import TurboJPEG

def transposeImage(image, orientation):
    """See Orientation in https://www.exif.org/Exif2-2.PDF for details."""
    if orientation == None: return image
    val = orientation.values[0]
    if val == 1: return image
    elif val == 2: return np.fliplr(image)
    elif val == 3: return np.rot90(image, 2)
    elif val == 4: return np.flipud(image)
    elif val == 5: return np.rot90(np.flipud(image), -1)
    elif val == 6: return np.rot90(image, -1)
    elif val == 7: return np.rot90(np.flipud(image))
    elif val == 8: return np.rot90(image)

# using default library installation
turbo_jpeg = TurboJPEG()
# open jpeg file
in_file = open('foobar.jpg', 'rb')
# parse orientation
orientation = exifread.process_file(in_file).get('Image Orientation', None)
# seek file position back to 0 before decoding JPEG image
in_file.seek(0)
# start to decode the JPEG file
image = turbo_jpeg.decode(in_file.read())
# transpose image based on EXIF Orientation tag
transposed_image = transposeImage(image, orientation)
# close the file since it's no longer needed.
in_file.close()

cv2.imshow('transposed_image', transposed_image)
cv2.waitKey(0)

Installation

macOS

  • brew install jpeg-turbo
  • pip install -U git+git://github.com/lilohuang/PyTurboJPEG.git

Windows

Linux

  • RHEL/CentOS/Fedora

    • Download libjpeg-turbo.repo to /etc/yum.repos.d/
    • sudo yum install libjpeg-turbo-official
    • pip install -U git+git://github.com/lilohuang/PyTurboJPEG.git
  • Ubuntu

    • sudo apt-get update
    • sudo apt-get install libturbojpeg
    • pip install -U git+git://github.com/lilohuang/PyTurboJPEG.git

Benchmark

macOS

  • macOS Sierra 10.12.6
  • Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
  • opencv-python 3.4.0.12 (pre-built)
  • turbo-jpeg 1.5.3 (pre-built)
Function Wall-clock time
cv2.imdecode()       0.528 sec  
TurboJPEG.decode() 0.191 sec
cv2.imencode()       0.875 sec  
TurboJPEG.encode() 0.176 sec

Windows

  • Windows 7 Ultimate 64-bit
  • Intel(R) Xeon(R) E3-1276 v3 CPU @ 3.60 GHz
  • opencv-python 3.4.0.12 (pre-built)
  • turbo-jpeg 1.5.3 (pre-built)
Function Wall-clock time
cv2.imdecode()       0.358 sec  
TurboJPEG.decode() 0.135 sec
cv2.imencode()       0.581 sec  
TurboJPEG.encode() 0.140 sec

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyTurboJPEG-1.6.2.tar.gz (11.2 kB view details)

Uploaded Source

File details

Details for the file PyTurboJPEG-1.6.2.tar.gz.

File metadata

  • Download URL: PyTurboJPEG-1.6.2.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for PyTurboJPEG-1.6.2.tar.gz
Algorithm Hash digest
SHA256 80e7ff8b63b236d077a080135f38a34549e111a3251d1bf05973e0baa1c31b50
MD5 bfbf99f9fc72e8181dcf69a56e4b177c
BLAKE2b-256 212570fbc0ab58818e8e23fb9a11e253bcdd19c89efbe5bd19409275504a33ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page