Skip to main content

This package computes a variety of similarity metrics between concepts present in the UMLS database

Project description

Overview

This package computes a variety of semantic similarity metrics between concepts present in the UMLS (Unified Medical Language System) database. It serves as a Python wrapper based off the Perl modules (UMLS Interface and UMLS Similarity) developed by Bridget McInnes and Ted Pedersen, offering an accessible and user-friendly interface for Python users.

Available Similarity Measures

* The basic path measure --> path
* The undirected path measure --> upath
* Leacock and Chodorow (1998) --> lch
* Wu and Palmer (1994) --> wup
* Zhong, et al. (2002) --> zhong
* Rada, et. al. (1989) --> cdist
* Nguyan and Al-Mubaid (2006) --> nam
* Resnik (1996) --> res
* Lin (1988) --> lin
* Jiang and Conrath (1997) --> jcn
* The vector measure --> vector
* Pekar and Staab (2002) --> pks
* Pirro and Euzenat (2010) --> faith
* Maedche and Staab (2001) --> cmatch
* Batet, et al (2011) --> batet
* Sanchez, et al. (2012) --> sanchez

Installation

To install PyUMLS_Similarity, run the following command:

pip install PyUMLS-Similarity

Prerequisites

Before using the PyUMLS_Similarity package, ensure that you have the following prerequisites installed and set up:

Strawberry Perl

The package requires Strawberry Perl to run Perl scripts. Download and install it from Strawberry Perl's official website.

MySQL

A local MySQL database instance is required to store and access UMLS data. Download and install MySQL from MySQL's official download page. This package was tested on MySQL 8.1.0.

In order to work efficiently with the UMLS, you'll want to configure MySQL. A good starting point is to use the parameters designated by the UMLS found here.

UMLS Data

You need to have a local instance of the UMLS installed in MySQL. This involves downloading UMLS data and importing it into your MySQL database. Follow the guidelines provided by the UMLS for obtaining a license and downloading the UMLS data.

UMLS-Interface and UMLS-Similarity Perl Modules

The package depends on the UMLS-Interface and UMLS-Similarity Perl modules. If you are interested in using feature-based semantic similarity metrics you'll also want to download WordNet and the associated Perl modules. After installing Strawberry Perl, install these modules using CPAN:

cpanm UMLS::Interface --force
cpanm UMLS::Similarity --force
cpanm WordNet::QueryData
cpanm WordNet::Similarity

Usage

IMPORTANT: The first time you run a path based semantic similarity metric calculation, the UMLS Interface needs to create an index within MySQL of your UMLS instance for efficient pathing calculations in subsequent runs. This can be a long process depending on your machine hardware and your MySQL configuration. The default source vocabulary (SAB) is the UMLS Metathesaurus (MTH). Indexing this was relatively fast in my machine (a few minutes). It is possible to use/include other SABs as part of your UMLS Interface configuration like SNOMED, LOINC, CPT, etc. however, be warned that this will exponentially increase both the required memory for your process AND the time required for the indexing. For example, indexing SNOMED took about 2 days.

Below are some examples of how to use the PyUMLS_Similarity package.

Start by initiating an instance of the PyUMLS_Similarity class:

from PyUMLS-Similarity import PyUMLS_Similarity

# define MySQL information that stores UMLS data in your computer
mysql_info = {}
mysql_info = {
    "username": "root",
    "password": "your_password",
    "hostname": "localhost",
    "socket": "MYSQL",
    "database": "umls"
}

umls_sim = PyUMLS_Similarity(mysql_info=mysql_info)

Computing Multiple Similarity Metrics

You can compute similarity metrics between UMLS concepts as shown below.

You can either provide a list of tuples contains the CUIs to be compared:

cui_pairs = [
    ('C0018563', 'C0037303'),
    ('C0035078', 'C0035078'),
    ('C0018787' ,'C0027061')
]

Or you can provide a list of tuples containing the medical terms you want to be compare:

cui_pairs = [
    ('hand', 'skull'),
    ('Renal failure', 'Kidney failure'),
    ('Heart' ,'Myocardium')
]

Compute similarity using specific measures

measures = ['lch', 'wup']
similarity_df = umls_sim.similarity(cui_pairs, measures)

An example output would look something like this:

Term 1 Term 2 CUI 1 CUI 2 lch wup
0 hand skull C0018563 C0037303 0.500 0.700
1 Renal failure Kidney failure C0035078 C0035078 1.000 1.000
2 Heart Myocardium C0018787 C0027061 0.823 0.875

Finding Shortest Path

To find the shortest path between concepts:

shortest_path_df = umls_sim.find_shortest_path(cui_pairs)

Finding Least Common Subsumer

To find the least common subsumer (LCS) of concepts:

lcs_df = umls_sim.find_least_common_subsumer(cui_pairs)

Concurrency

PyUMLS_Similarity also supports running tasks concurrently for efficiency. Each time the Perl module is called it triggers a new connection to the database. This overhead is actually the most time consuming portion and running functions sequentially and/or separately adds up more and more overhead. To save time, I've made it so multiple functions can be run concurrently via Python's threading module. This essentially removes the overhead time of any additional function calls.

tasks = [
    {'function': 'similarity', 'arguments': (cui_pairs, measures)},
    {'function': 'shortest_path', 'arguments': (cui_pairs)},
    {'function': 'lcs', 'arguments': (cui_pairs)}
]

results = umls_sim.run_concurrently(tasks)

Acknowledgements

This package is based on the Perl module developed by Bridget McInnes and Ted Pedersen.

Future Developments

Future developments of this package will

  • allow for calculations of standard similarity metrics like cosine similarity, sorensen-dice index, jaccard similarity, and others
  • allow for modifications of the UMLS Interface Configuration file

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyUMLS_Similarity-0.0.9.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

PyUMLS_Similarity-0.0.9-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file PyUMLS_Similarity-0.0.9.tar.gz.

File metadata

  • Download URL: PyUMLS_Similarity-0.0.9.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for PyUMLS_Similarity-0.0.9.tar.gz
Algorithm Hash digest
SHA256 276c9b40af3735e165c382f1f0e6832669e58bedf627d2b4618903a496a20d08
MD5 623715e84808908500383509d6a04ec5
BLAKE2b-256 15b7bd6e53d5078d2ac28905d9f0a5bd5e7d4d62d113bb085fa599551799e8f9

See more details on using hashes here.

File details

Details for the file PyUMLS_Similarity-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for PyUMLS_Similarity-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d2bfb0aac0a7be888317a8f097ebc33bd7ee6b07abb1f5e7d73dd81bf0d1f09a
MD5 4c093e3d3ab020afa3374dfff6b43dea
BLAKE2b-256 9e5c2210533cf29cf41e553f460de09afb373c2c0f2fe4b7f7b9a298d6a226de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page