Skip to main content

PyValidator

Project description

schema is a library for validating Python data structures, such as those obtained from config-files, forms, external services or command-line parsing, converted from JSON/YAML (or something else) to Python data-types.

PyValidator is an (almost) drop-in replacement of Python Schema, written almost from scratch for the sake of better error handling.

Note: Most of the README here is a small edits on the original Python schema’s README

Examples (From python schema)

Here is a quick example to get a feeling of schema, validating a list of entries with personal information:

>>> from pyvalidator import Validator, And, Use, Optional

>>> validator = Validator([{'name': And(str, len),
...                   'age':  And(Use(int), lambda n: 18 <= n <= 99),
...                   Optional('sex'): And(str, Use(str.lower),
...                                        lambda s: s in ('male', 'female'))}])

>>> data = [{'name': 'Sue', 'age': '28', 'sex': 'FEMALE'},
...         {'name': 'Sam', 'age': '42'},
...         {'name': 'Sacha', 'age': '20', 'sex': 'Male'}]

>>> validated = validator.validate(data)

>>> assert validated == [{'name': 'Sue', 'age': 28, 'sex': 'female'},
...                      {'name': 'Sam', 'age': 42},
...                      {'name': 'Sacha', 'age' : 20, 'sex': 'male'}]

If data is valid, Validator(some schema).validate will return the validated data (optionally converted with Use calls, see below).

** Note: Since PyValidator is a drop-in replacement of Python Schema,

See https://github.com/keleshev/schema for more usage examples.**

PyValidator vs Python Schema

Python Schema emits SchemaError that can contain at most 1 type of error, and its output is not very helpful in programming to handle errors.

On the other hand, PyValidator emits an “ErrorBucket” that shows all the errors, along with fully-traversible structures for programs to use.

Enough with that long-talk, and here’s a demo of python schema:

>>> from schema import Schema, Optional
>>> sc = Schema({
...     'wow':'so schema',
...     'such':'validation',
...     'string!!!': str,
...     Optional('so int'): int})
>>> try:
...     sc.validate({'so int': 'NOT int'})
... except Exception as e:
...     error = e
>>> error
SchemaError("'NOT int' should be instance of <type 'int'>",)
>>> dir(error)
[ ... , 'args', 'autos', 'code', 'errors', 'message']
>>> error.args
[None]
>>> e.autos
["'NOT int' should be instance of <type 'int'>"] #string...

PyValidator’s output demo:

>>> from pyvalidator import Validator, Optional
>>> sc = Validator({
...     'wow':'so schema',
...     'such':'validation',
...     'string!!!': str,
...     Optional('so int'): int})
>>> try:
...     sc.validate({'so int': 'NOT int'})
... except Exception as e:
...     error = e
>>> error
Generic Errors:
{'wrong_type': {'so int': [Wrong Type: got str instead of int]}, 'missing_key': {'such': [Missing Key: such => validation], 'wow': [Missing Ke
y: wow => so schema], 'string!!!': [Missing Key: string!!! => <type 'str'>]}}

Custom Errors:
[]

>>> error.errors # note: all errors are preserved.
{'wrong_type': {'so int': [Wrong Type: got str instead of int]}, 'missing_key': {'such': [Missing Key: such => validation], 'wow': [Missing Ke
y: wow => so schema], 'string!!!': [Missing Key: string!!! => <type 'str'>]}}
>>> error.error_count
4
>>> error.errors['missing_key']  #needs formatting...
{'such': [Missing Key: such => validation], 'wow': [Missing Key: wow => so schema], 'string!!!': [Missing Key: string!!! => <type 'str'>]}
>>> type(error.errors['missing_key']['such'])
<class 'pyvalidator._errorbucketnode._ErrorBucketNode'>
>>> # Note: There's room for improvement here...
>>> error.errors['missing_key']['such'].errors[0]
Missing Key: such => validation
>>> dir(error.errors['missing_key']['such'].errors[0])
[ ..., 'args', 'data', 'error_name', 'key', 'message']
>>> error.errors['missing_key']['such'].errors[0].key
'such'
>>> error.errors['missing_key']['such'].errors[0].error_name
'missing_key'
>>> error.errors['missing_key']['such'].errors[0].data
'validation'

Rationale for _ErrorBucketNode instead of dict / list

** Any suggestion for _ErrorBucketNode is welcome :)

(_ErrorBucketNode itself is somewhat ugly) **

Installation

Use pip or easy_install:

pip install pyvalidator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyvalidator-0.0.16.tar.gz (14.3 kB view details)

Uploaded Source

File details

Details for the file pyvalidator-0.0.16.tar.gz.

File metadata

File hashes

Hashes for pyvalidator-0.0.16.tar.gz
Algorithm Hash digest
SHA256 ee257ffaf545f79e0176de7c47b3c43a8bfa05e225d65f6c21213f90b1e1fbc5
MD5 bb1033c1683bf92c1e320617778ee9b2
BLAKE2b-256 2118015699ba157dd465ff2de26b59403fadfc0324756ebefbd97ba433113d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page