Skip to main content

PyWavelets, wavelet transform module

Project description

PyWavelets is a Python wavelet transforms module that includes:

  • nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Tranfsorm

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Results compatibility with Matlab Wavelet Toolbox (tm)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

PyWavelets-0.5.0.zip (4.5 MB view details)

Uploaded Source

PyWavelets-0.5.0.tar.gz (4.4 MB view details)

Uploaded Source

Built Distributions

PyWavelets-0.5.0-cp35-cp35m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

PyWavelets-0.5.0-cp35-cp35m-win32.whl (998.1 kB view details)

Uploaded CPython 3.5m Windows x86

PyWavelets-0.5.0-cp35-cp35m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.5m

PyWavelets-0.5.0-cp35-cp35m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.5m

PyWavelets-0.5.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

PyWavelets-0.5.0-cp34-cp34m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.4m Windows x86-64

PyWavelets-0.5.0-cp34-cp34m-win32.whl (994.5 kB view details)

Uploaded CPython 3.4m Windows x86

PyWavelets-0.5.0-cp34-cp34m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.4m

PyWavelets-0.5.0-cp34-cp34m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.4m

PyWavelets-0.5.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

PyWavelets-0.5.0-cp27-cp27mu-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7mu

PyWavelets-0.5.0-cp27-cp27mu-manylinux1_i686.whl (2.4 MB view details)

Uploaded CPython 2.7mu

PyWavelets-0.5.0-cp27-cp27m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

PyWavelets-0.5.0-cp27-cp27m-win32.whl (1.0 MB view details)

Uploaded CPython 2.7m Windows x86

PyWavelets-0.5.0-cp27-cp27m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7m

PyWavelets-0.5.0-cp27-cp27m-manylinux1_i686.whl (2.4 MB view details)

Uploaded CPython 2.7m

PyWavelets-0.5.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file PyWavelets-0.5.0.zip.

File metadata

  • Download URL: PyWavelets-0.5.0.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyWavelets-0.5.0.zip
Algorithm Hash digest
SHA256 95c4607ae28d0872638af6a9a911ff753eca0d6bf58f8ac8915a72628cf9098e
MD5 e7da7fb55141640976f6d7e174b724f7
BLAKE2b-256 82c86a5af8defb38e7feb9188f6e74307d982d8eceeb0927ae2dc29e59196e50

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0.tar.gz.

File metadata

  • Download URL: PyWavelets-0.5.0.tar.gz
  • Upload date:
  • Size: 4.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyWavelets-0.5.0.tar.gz
Algorithm Hash digest
SHA256 237fb640c11fc9c0634b0ba0b877b66131e383e422045cc34cab526a00402be9
MD5 a1498dcb4ce78b0e7eeaf840db781805
BLAKE2b-256 e6e7cf124a5444cfc86592c7a5d85aedf3d73954395b58d1992f1b2b974bf3bc

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a358cd55a7423623583f17643a279f55e1a6c8a45db9a08d5c8d66fc866fb360
MD5 03d30796372eaba1ca68798c1073d347
BLAKE2b-256 906a6f9424c3fa0dee01990ab086f503d4dc259607c47751b6652e497e7f6df1

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 4299b54b213e8e217717cf70bafe2b763d152a8f034c07cdcb190a2ebd6e24dc
MD5 0ea3a94a964b044a7f2602222ea6b89c
BLAKE2b-256 656586b160f40149a311fec8b51b44c30cd95598173474121576f346ce5f53be

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f5a5c818e8caea71c7aa5c715ae9c6cc08b76dfa95b36d125b8d703c523ab550
MD5 f41976ab15aa03385602898e9259b8b5
BLAKE2b-256 7f0191f9ed94a91429e04d74863ddcf2830e2aaf369c6da85bfab98a9c88f13e

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c20e917ed20aaec2007600f976dac1c7580c3794a18c19f59ce16570a9184507
MD5 a5d50f389daa114353a668eebe388074
BLAKE2b-256 f84ebedc7c383833924dbf810db2ec0edcbce07cf0281da3328e081ac5c1ee34

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ebd0b9467d5e25ef6d55cec1b9ccf78ec3be90c0ad02699b3e827f728e2d1c02
MD5 2c02272043da2a24f0b32a85561d6102
BLAKE2b-256 1ba4d0aa446e3a08b005df1f8f21395b88d6fe12a97c4889381f558e810e85c8

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 5d0ee88a3bf53a7c04bc3afaea64bd2f9618e9f4eca5799ab92016816ea8fe3a
MD5 9b714461956c189a3ed29162d409a700
BLAKE2b-256 a37ca355ffd5e38d2cf718a077c5d76117e411ca9420f67031d0f1af1139316f

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 5e90c187ebb16bfbdd43cf391adf9fd2c3eb1524b88b830901ca78c2b1d982d6
MD5 84e213f88e5f0e80f672907ba3fddfc3
BLAKE2b-256 8bafd96f7b0377beb548815794f56eee780fcd37133a5ff4e728cb57a0f89554

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8f53569a3a2cbd28940a3b8bdc908a36c8613c7c86c33e6e04ffa0ce5f6f4f95
MD5 29aad20acd83513b1a68f82a602d6fcf
BLAKE2b-256 779506ecaabdae5b22e2f9f76dd391846161ed1cd731b6c905054a4d6afe5964

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 437c0189de17812377ddd36ad72bbe02936b11019cb9d7e7ff53e849142117d1
MD5 29c49a32e7cee11a91043f315acbbaa8
BLAKE2b-256 70fcd2b9346c4415452945f313f02b727c13267018ebbd9c3030eb6cbf60fe84

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ef14ae09f44822eaa6aaf512dd5256f2f6e5832c7bbb0a076172307d5a62a7e5
MD5 e20f6465feaed1b02d78e30279aba8a6
BLAKE2b-256 ceaa4d7c78391f49fd810876763416757614dc9c7ca9dfb49b9848c5f78db1e5

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 784974e67e4832422f299bb04fba94bf79adc1d617097d5d4c51de3e9a1872cb
MD5 f21a4138ebe580edba2d9dc6dac86b0a
BLAKE2b-256 b87e5ed09f50fbc3fdd3cf0ef12736982b067c90ae4f6d06f67dbaabd0e2ef30

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c136bb47cc5c118f9bf16c0a514c400474a512e7ddf974cf0fde8b17cb4e8628
MD5 70f7fb275eb525e3abc3622f1579cfda
BLAKE2b-256 823607c8497ddf6eabe6338ee6c3e30ba188c7811da73237fbe1379af6f25b59

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 55eb994ddccfc21e96760e063be314fc683b3d24a48bda925b617be541cb4d1a
MD5 84a201ecc9ccac6ba5abe5b29898d54d
BLAKE2b-256 56e82528e2e5cf527f53739615fbc141de93bb9e3a3c50c952d5c0d019aa2bd8

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 e1c99ebb14dda41a8f62fc2804c7010cb1b167cbf74c8a9c62214c86ac48c1cd
MD5 944beb69d6c04a59971b85fd0299806b
BLAKE2b-256 1c9bf904fc03d752f25c5f48d4733aedc0a562dc538d1ea08849d641e414cd87

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6da07a2f58c2dd7e19cc9dc6af3c69b5c077e3507b29d08fd2a46fc0dd4d11f4
MD5 fc27251e47bf8d8745b53a872a1695e2
BLAKE2b-256 bb2043bfe9d11db1a78b809a4315720e42802526f96b30e46cf5ed8ddceb8c5f

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1c025769badaf02940770f10dddb51f098508990f221c7107eff7880995fabb3
MD5 26dea6f69d4cfa77c683a622620b2fbe
BLAKE2b-256 99da646b6f96ca83ed42a1abdaa496c1deefb14b5fab54e6677ae911746593f8

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ef704f68d65dd80e73166a61d9cd777cc87993e18eb0b95a82d70c6576ce0f67
MD5 e715094931bd80addbb4ffbd87d1d63b
BLAKE2b-256 39ccab747dee9e79e33cb7afb44252c085a53183d2663f32d01908061175039d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page