Skip to main content

PyWavelets, wavelet transform module

Project description

PyWavelets is a Python wavelet transforms module that includes:

  • nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Tranfsorm

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyWavelets-1.2.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

PyWavelets-1.2.0-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyWavelets-1.2.0-cp310-cp310-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_i686.whl (6.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyWavelets-1.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

PyWavelets-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyWavelets-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

PyWavelets-1.2.0-cp310-cp310-macosx_10_13_universal2.whl (4.9 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

PyWavelets-1.2.0-cp39-cp39-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyWavelets-1.2.0-cp39-cp39-win32.whl (4.1 MB view details)

Uploaded CPython 3.9 Windows x86

PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_i686.whl (6.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyWavelets-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

PyWavelets-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyWavelets-1.2.0-cp39-cp39-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

PyWavelets-1.2.0-cp39-cp39-macosx_10_13_universal2.whl (4.9 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

PyWavelets-1.2.0-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyWavelets-1.2.0-cp38-cp38-win32.whl (4.1 MB view details)

Uploaded CPython 3.8 Windows x86

PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_i686.whl (6.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

PyWavelets-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

PyWavelets-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyWavelets-1.2.0-cp38-cp38-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

PyWavelets-1.2.0-cp38-cp38-macosx_10_13_universal2.whl (4.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

PyWavelets-1.2.0-cp37-cp37m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyWavelets-1.2.0-cp37-cp37m-win32.whl (4.1 MB view details)

Uploaded CPython 3.7m Windows x86

PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_i686.whl (6.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

PyWavelets-1.2.0-cp37-cp37m-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file PyWavelets-1.2.0.tar.gz.

File metadata

  • Download URL: PyWavelets-1.2.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0.tar.gz
Algorithm Hash digest
SHA256 6cbd69b047bb4e00873097472133425f5f08a4e6bc8b3f0ae709274d4d5e9a8d
MD5 76ae9f472f46c3c8c1c8f50b71bb539a
BLAKE2b-256 35e9decd467448cde227aad94ff2976046afd3a51ad461ba9a325840687e8836

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 73805016353a47c5b5f9cea547ea6ae07cd3520abfd7888916ff56b01e71307a
MD5 90325409430fb502f1f2db27ba074c73
BLAKE2b-256 58ce68dc8dee992218b694e75c81c6e9904c6caa87151519d118fdcf4ecfc87e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d30c09fa805533bf7c8a5d06aa8babda5ae6c1541cd652cb2ebe6ab0b9536c0e
MD5 cf3be4e0366dfc774f6ae351ac82495d
BLAKE2b-256 9ee3924ecf6e6c260cb7a7710e40b9d954ea76b8abbba1db0bbf617a9dfd6553

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ec1fc92573f56c1b129006d109e7518a098f3c8c6a2183b495619faca931461
MD5 47aadfdf900c9db7f046183650447622
BLAKE2b-256 6a73572c87187a63ffeffa46bfa35ef5ea3aeba7ce8d10f6dfa3dd4ebba0b369

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 333e1370167b0a2b963df82e42968000734bfa23b2ce88191e8ce9d24fc4cc57
MD5 32ec799849be413f8bb02d3ed757516f
BLAKE2b-256 47f8b7d04396a560246dc5a1d64e37a9d9c86c9f5238d34354977ba8ef8ce798

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9bf543d552d20cf6ddfd690c5c18afacc8440cfb09b7515b2242bb9abfcc5eb
MD5 0c87363184a277de4e93e1745fe0ccba
BLAKE2b-256 830edcef69516ae2114de04d9e4a5fd723d7c032c51622783a4831ed688d3b9e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79386f4d8518e344487acf22b1c130e5907b3c45852aa50c18df5e19895aa92e
MD5 f4e8d2a459d285d590ae9944a41855b0
BLAKE2b-256 165476f480aad2d3aac8f73d653c01a0802baf751ef6bf8cc1e206382604043c

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28bb3d7d411ffbcfaa5a81a5a32044805893752c1641b39f6544b7e0a24661c3
MD5 48dfb5c985f87bbb24b421e471626416
BLAKE2b-256 78e474811d0f4719ea570b291354cd8dbea8c25614561d94dcc4a3933b49e811

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16c30e98f52e1a5d0a06b4b8f294114aaa94a0e95445b4056b6ca0a7a5535a42
MD5 83cb4b0d846b770a42673c627abcbb6a
BLAKE2b-256 46a3f5363ade2021c41218fd01cdd836270fd71f87cc4622632603b70f088a3c

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3089aa6b4962e1f5dbd0434a10f174f7a50f80bf64cb7d33cc725af07bd30ecc
MD5 48acfeae654582889f5d941ed0021499
BLAKE2b-256 f2fdcbf0453e012478f8489bc61ddb5a20805a9fbee584d90ddc2115b199c5a4

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp310-cp310-macosx_10_13_universal2.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.10, macOS 10.13+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4c29efb581245e4ba3e76b23b1bf254a7c79821d7e63f432e68044cf2d233e9e
MD5 927f900f1d213b229d773f21116edf9a
BLAKE2b-256 b11aa41dbc5d4d767d81c59b6835cc82c1b9d8735edffb83849d1a6935f9227e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69cfc7f2ceb0a1097e7e8d1a026cbb2ff1afecc2d79820856f1abccb6cb59cc4
MD5 9fd8452874d0fb8dd169b708c1b3de52
BLAKE2b-256 6f3edc268cf46e35da469d6cd08761d39539cfc9815b3e8b1e20415cea587d1b

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fd5ca221ac7bedb2a9aebcf3b05020827564db5a979b25005b3a2c7ba84069a2
MD5 25921edca3032a519e863ee206c0c0e4
BLAKE2b-256 a67492ed51b0e3bec955c2273166288507124af523ecf8c483de471cfbc2fa89

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 663d265cb433653ef6335973edd13c66cd86c85fbe9c09e4bd138119bac15974
MD5 2233e13b83527e8a2cbb10792f6c2dbc
BLAKE2b-256 0080da50daad86c8165a881e1fdf4e32a84d6736582ded07d65ed5119953c7f1

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a82e8c307b98d65737b286e0b458343ecee8505dfb519cd314a5f211f4fb92b9
MD5 5e70a3a4ddc411d87367a78e1c2c82a1
BLAKE2b-256 3ab35a06c52bd5bd5f62dc3bca8e85c706ae4dc13c9aef8bde7ac4dc09b83f7e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 449d2d5f9c1f28a1bce01f714f9f742d9fdbce90f66de0a92cad39d98d24477b
MD5 92f2468445f8da9842f62b0e67ab9325
BLAKE2b-256 fbb559c9026c7641be4dc9a4b439bd18792d12c5873125942eca8e49b009d6da

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b3d9dab8223d0ce30e7480751f526ce1e97a1dcf5242875f8206e4449953116c
MD5 bc1687a360be63a902383e1592e17baf
BLAKE2b-256 017b7759b36daf466ee7dfbbb913a3ad5c9f5315a2bb6bdbb955203c727eab36

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 18d84982417790a645f74cb0f968e89fb8af575dbf17a52c64af5075aa5528b8
MD5 6eceec95d0ff5fee7bd0747dca3bef95
BLAKE2b-256 55c24df58ffb51c60f0f71ede39d2f5a75d55fddb36cbb20f4b14f86a9648dc0

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33375e3e6e361659f2519d412de2b50e2527a97c3946ffd66ca20a8ea1346fea
MD5 9be76826429d567a8509276c27764a4f
BLAKE2b-256 a3edf25b964b24f36397c2220e4b02d1e5d1c7b1159d24b2b094c396bcf80dfd

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 351937e4fc6f3df3555cd2813e73bfc344885c5d994fd621d13dd004d05a4cb7
MD5 6532f64b5eda57112fee9c9e5e187577
BLAKE2b-256 66f41458d6b925ef5c801566666e5b2e190de606b4d7080c06afc8285be68d11

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp39-cp39-macosx_10_13_universal2.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.9, macOS 10.13+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 90d53119f4b518236ad9a8a6be96d86efb1b4eeb73c28e3ed33824ae601ce7b1
MD5 1a840cf36610c634e0fa366b01772748
BLAKE2b-256 7db8352050185903771d78dbda4f993cac720868f6eed93332133762e24f0bcd

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 be231e4bc569f2b1177711390d406d08ce388c1e01ab864f89be8928db234856
MD5 d4b080c0866baac23ae45f3aa93d26cb
BLAKE2b-256 3ad3e5c51f3cd16d43f72de5a9de3dd989277df61428a79adcb0ee0f9943387b

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8a72f11c4d23f8ed8544def0003f500e98598e7a1efce892e6f964c430469c05
MD5 59ab1e222f4bb1b91e9b6173d621c499
BLAKE2b-256 253a3195321d0629a577d9497bff5df6da540bd8a16ce74ae4a1955e4b2e2977

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 df4d950be507a68d107c8f618ef7a9e0d9071789cfc1a840f89d0c985448880f
MD5 64c31d205adabd4c90d6135d089c07ea
BLAKE2b-256 8405ce94eaaee1115a3ae55971f58b73a91e902bee013471bb63528ab33da99a

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a1131c27b9f79ca56dd6347d5585a609f51ed3cad0cfb6c17419b1733d3b6acd
MD5 ebc09e3af054d5ab499f37108a21be69
BLAKE2b-256 db78fd4e32a2d9b4d3af76b605b979ef6706051d6e1bf2cf965047238917d491

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71415f2c376ae3e1331249043dddb63370c92fed162ebcb108fd87e12a956d89
MD5 1eb4b559ae634302a24ff5825d740875
BLAKE2b-256 f774fb491d6b2c8258b32dbac5037383473df53db2b72a887ad3ad6c59a12773

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c8b388652b6afb4bf7be313be057240386de93817c6744c2aaf43a22890733c8
MD5 ef1fb42a4295d4eb15a5be81fc6497d5
BLAKE2b-256 542ffb0bea7b5c19ce2b84fcf6e951bac3e31cb4d7b6e97d9d317ecc179a82aa

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 44315d197bad9564210ef42f2d5a01c07ee6fd456c679d4a6d0f4e23ec9930cf
MD5 4193a6e61d40adf0d0316c99e034629c
BLAKE2b-256 11380c3b5d8a6fe5dd2b4ad45444be2986da81238c0935f11a25dfe5dd5e2f0f

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 333684cc0d0e89cf6cb3a8b3ea68528790e1a3edc565a100cda47e29860f892d
MD5 2972099f5f365c7a7388b5d1de540cee
BLAKE2b-256 618213741d25c6568cdbbd8f038a9dc4cbd8ced28a54be2163ebdede454299a8

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7e4749ff324e8e01a2fdc859ac9714c4be1cbc6e8a34d5ddedb28fc9513b31a1
MD5 d54c1040362b9ad04ac0641226c16fe7
BLAKE2b-256 f18c1d46b79b07a9877402b9323d9daaf4b59661d32b5c314c708167ffab33a3

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp38-cp38-macosx_10_13_universal2.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8, macOS 10.13+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d9831b251f63460302811607f80a20285292ed0a0a046f95b4648edc0ed90f9c
MD5 7b3719fcdd11cbcfbb39592c6c8d6fea
BLAKE2b-256 6de40911be1ebf5592f3cd4fdb38918b729978feb655f33662db2584651ef593

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7a725030682bf891ced9819b4b21d6ef356fa11b70399d2d3adb319aead1efb0
MD5 32324f8751586ae89e4aeab935af680d
BLAKE2b-256 27e68f491c344f2811cee518121ff6030c813a8f6f1f6109a18173f802ffa3b6

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 537b5a8a8a3e9e5b931d34b517aa2312a3d8385937f98c4f8ffa668483329cfb
MD5 887d6b05aa56c0df270b2f52678b53cb
BLAKE2b-256 c5233d05af79bef7dc741c1b65fa525030d7f15d81149efe48688dcb627f8811

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9b05d2f21da666f918692f0313484002307794b5380f7291a395b9271abdda5c
MD5 f2e7dc6c824e6084f831cdb114255ccf
BLAKE2b-256 f404394c98316402f8625d1510f15b51d597c6916edf05a80e50811ebbd2129c

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 abedc0b49273a734d4592e325a5fb32f0741e115d6722e0c59964ecf21344640
MD5 e9623be8c9a4dfbccf0a5d9a52ed50f1
BLAKE2b-256 7122bfda80c4d28a36c32580620f03002f9ce3a91605b33af31604df68056f06

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 616fd2967dd153c3f539b1e0979168969f3702125caae4caa769efc5621cc2b7
MD5 b466b3e095174b20913b8b53f314b969
BLAKE2b-256 a19c564511b6e1c4e1d835ed2d146670436036960d09339a8fa2921fe42dad08

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 151a7f3d3db36baffe640d691403b7cd3938a1886c8a387b719e7e8b580dd4b1
MD5 54d08cc173e293858c026875026a5cc3
BLAKE2b-256 b5c4154cca45673362acbabe9b6b6c9546181543bd184408a676e9b783184885

See more details on using hashes here.

File details

Details for the file PyWavelets-1.2.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: PyWavelets-1.2.0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for PyWavelets-1.2.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ec670e78be2c3193e26c4bfa31dff1edd89ee8d7e2f4219782f3ef3f6daf37f0
MD5 e0879c3135421950c8798fc3df79d54c
BLAKE2b-256 93ce4ce66274d1e882805d11cd7231be8bbcd75c07c26a95b923d3c65fb935ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page