Skip to main content

PyWavelets, wavelet transform module

Project description

PyWavelets is a Python wavelet transforms module that includes:

  • nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Tranfsorm

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyWavelets-1.4.1.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

PyWavelets-1.4.1-cp311-cp311-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyWavelets-1.4.1-cp311-cp311-win32.whl (4.1 MB view details)

Uploaded CPython 3.11 Windows x86

PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.1-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyWavelets-1.4.1-cp311-cp311-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

PyWavelets-1.4.1-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyWavelets-1.4.1-cp310-cp310-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.1-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyWavelets-1.4.1-cp310-cp310-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

PyWavelets-1.4.1-cp39-cp39-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyWavelets-1.4.1-cp39-cp39-win32.whl (4.1 MB view details)

Uploaded CPython 3.9 Windows x86

PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.1-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyWavelets-1.4.1-cp39-cp39-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

PyWavelets-1.4.1-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyWavelets-1.4.1-cp38-cp38-win32.whl (4.1 MB view details)

Uploaded CPython 3.8 Windows x86

PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.1-cp38-cp38-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyWavelets-1.4.1-cp38-cp38-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file PyWavelets-1.4.1.tar.gz.

File metadata

  • Download URL: PyWavelets-1.4.1.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.1.tar.gz
Algorithm Hash digest
SHA256 6437af3ddf083118c26d8f97ab43b0724b956c9f958e9ea788659f6a2834ba93
MD5 6e487b2c3418fc0a1acf3be53bfbb0c3
BLAKE2b-256 6ed4008dceeb95fafcf141f39393bdfc10921d0b62a325c2794ac533195a1eb3

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 daf0aa79842b571308d7c31a9c43bc99a30b6328e6aea3f50388cd8f69ba7dbc
MD5 957b7c9d3102d6c744bf01d4e6745c5d
BLAKE2b-256 e4139a1632347677e1be27900d9dc922f19bc01440eb8b0c663cea63b35275fc

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7231461d7a8eb3bdc7aa2d97d9f67ea5a9f8902522818e7e2ead9c2b3408eeb1
MD5 1814baee3c1177810678075075f8cf31
BLAKE2b-256 1da10f9356779440aaaa35ff82479c40a094419f19ab94a3d5f49e090398959b

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 875d4d620eee655346e3589a16a73790cf9f8917abba062234439b594e706784
MD5 8d1d75c94ddc73b5ff3b55d5c8a31c01
BLAKE2b-256 dea1cd8a30e061f858f219364554b19d4318276c677a51d956c55fb0b134e8b2

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad987748f60418d5f4138db89d82ba0cb49b086e0cbb8fd5c3ed4a814cfb705e
MD5 40119bed2dcd3e486071e82ec4b58cd4
BLAKE2b-256 1d5e97ff80a20fb22f723f0c3f6f5f407b12579a560abf7c3a8087d052993dd9

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f19327f2129fb7977bc59b966b4974dfd72879c093e44a7287500a7032695de
MD5 c559aa736a3c534b27a2763327d88d48
BLAKE2b-256 94734df43d2e18e68c7ea88177c1fa14a25b5813a51b4953dc94c21f2de039d5

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 64c6bac6204327321db30b775060fbe8e8642316e6bff17f06b9f34936f88875
MD5 ab28abe7c48c44103adf0614e9e7a32c
BLAKE2b-256 13e486bb218c7926e1da7a52e0696cab120a17c995933f08d8228d9aa83b44c5

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 91d3d393cffa634f0e550d88c0e3f217c96cfb9e32781f2960876f1808d9b45b
MD5 e2cc9956e5b0930a7bdb55c4d6820b09
BLAKE2b-256 3512f1a4f72b5d71497e4200e71e253cc747077d8570b55693faaa7b81fb6dff

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 67a0d28a08909f21400cb09ff62ba94c064882ffd9e3a6b27880a111211d59bd
MD5 fc35179129cf2074fb7d2f14197b0fbf
BLAKE2b-256 51af53bcfea50c24cedb202b0c072193af94a1a611b26ab360082791e455b43f

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da7b9c006171be1f9ddb12cc6e0d3d703b95f7f43cb5e2c6f5f15d3233fcf202
MD5 0a2e84977c1eb2780d1bb917274037fd
BLAKE2b-256 3efc651024e8b6e69bef6def2cbe27d520309f4ffc56b8d4885ab7046e1edc6c

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 754fa5085768227c4f4a26c1e0c78bc509a266d9ebd0eb69a278be7e3ece943c
MD5 a4bdc8e2cce444a66ba7ad709842d4e7
BLAKE2b-256 07fe90ab3b98dfeb2177e1b8c8ccdd4e777e35dfe0aa98723308bd8f1a97fd47

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 231b0e0b1cdc1112f4af3c24eea7bf181c418d37922a67670e9bf6cfa2d544d4
MD5 21cc48db2f26d7526fad58e6cbb95959
BLAKE2b-256 f3662bbcad043383d7be3bca2155972adba1d06be3bc5536afbfa22f1cd99688

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d854411eb5ee9cb4bc5d0e66e3634aeb8f594210f6a1bed96dbed57ec70f181c
MD5 77d0428d2cf3e0d681327adc7f5d00ec
BLAKE2b-256 5092a78bf0c3d84afd9b17727cce122c3fdb3860a27bd67b32448c7e64301e7b

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 88aa5449e109d8f5e7f0adef85f7f73b1ab086102865be64421a3a3d02d277f4
MD5 ebeac41fcd5557f53c7d3a166a382b88
BLAKE2b-256 021589951f559601fb6755f2231558c33c1b9cbba9e8526906cbc258e27eb53d

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 47cac4fa25bed76a45bc781a293c26ac63e8eaae9eb8f9be961758d22b58649c
MD5 903c065a7912e99035644f0546688d0f
BLAKE2b-256 0d72db0ef5ca311627f86de89a7af6055301c67490f4160e725cdbd32eea7700

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71ab30f51ee4470741bb55fc6b197b4a2b612232e30f6ac069106f0156342356
MD5 13105f3903a2fec1236bb66b45c54368
BLAKE2b-256 5a984549479a32972bdfdd5e75e168219e97f4dfaee535a8308efef7291e8398

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 030670a213ee8fefa56f6387b0c8e7d970c7f7ad6850dc048bd7c89364771b9b
MD5 90fc745b575381843616a6e83c30df7b
BLAKE2b-256 34c0a121306b618af45ff7d769e1bd45ed3d6c798dc7f0094e0b56735388d96e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0e56cd7a53aed3cceca91a04d62feb3a0aca6725b1912d29546c26f6ea90426
MD5 c0603e0f03a69ddc456cb35d6797e0a3
BLAKE2b-256 a032eeeaa4de640a84e2cc35c25aea289367059abce0cac84a9987b139a2a25f

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 23bafd60350b2b868076d976bdd92f950b3944f119b4754b1d7ff22b7acbf6c6
MD5 be66379e9e941036abdf55f89f9a8804
BLAKE2b-256 9f6733b37d53da9d225301e30894db5083569aa670b446253b3906fc0e96119e

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ab8d9db0fe549ab2ee0bea61f614e658dd2df419d5b75fba47baa761e95f8f2
MD5 751facc097f4cc784dac10e9b312ac76
BLAKE2b-256 a98ff80ff31e73385b886c35fb9fb1377849f9c43a3c1195ed8dc8ed8dc1bd88

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 de7cd61a88a982edfec01ea755b0740e94766e00a1ceceeafef3ed4c85c605cd
MD5 6bf728076d7c0d1f9a4b2b20aca42982
BLAKE2b-256 6c927e900e574575358a5af6ad9f8378d889b1a21e2ba835bae9d0eb7efd505b

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 058b46434eac4c04dd89aeef6fa39e4b6496a951d78c500b6641fd5b2cc2f9f4
MD5 749f303e5c83522fc2e971b68649b168
BLAKE2b-256 884bb2b2a6f51e47c091c221bfde976a01a7e5f20e7e5e6341b2b9c4db73d2ed

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cb5ca8d11d3f98e89e65796a2125be98424d22e5ada360a0dbabff659fca0fc
MD5 5342f2f80746338abdca56d27162eda7
BLAKE2b-256 cdc1132756d0033b37f4013299ac048bf34d5094673712984edb9e90e8d8a179

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 578af438a02a86b70f1975b546f68aaaf38f28fb082a61ceb799816049ed18aa
MD5 d0b9a5c5f4648cc54f7427d5673f6e02
BLAKE2b-256 738c6d50b8e2ee4d12373a63791ad742df1e30ddd5f0f8d1c000c5b6b3afb2c9

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ab7da0a17822cd2f6545626946d3b82d1a8e106afc4b50e3387719ba01c7b966
MD5 b1af84d62d9e43e66de262ded064d105
BLAKE2b-256 2f52080267790e23a5186185f2c26d7b774cee754387d1bcb116c7a45f3546f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page