Skip to main content

PyWavelets, wavelet transform module

Project description

Service

Master branch

GitHub

Build Status

Appveyor

Appveyor Status

Read the Docs

Documentation Status

PyWavelets

What is PyWavelets

PyWavelets is a free Open Source library for wavelet transforms in Python. Wavelets are mathematical basis functions that are localized in both time and frequency. Wavelet transforms are time-frequency transforms employing wavelets. They are similar to Fourier transforms, the difference being that Fourier transforms are localized only in frequency instead of in time and frequency.

The main features of PyWavelets are:

  • 1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D, 2D and nD Multilevel DWT and IDWT

  • 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Transform

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Documentation

Documentation with detailed examples and links to more resources is available online at http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

Installation

PyWavelets supports Python >=3.9, and is only dependent on NumPy (supported versions are currently >= 1.14.6). To pass all of the tests, Matplotlib is also required. SciPy is also an optional dependency. When present, FFT-based continuous wavelet transforms will use FFTs from SciPy rather than NumPy.

There are binary wheels for Intel Linux, Windows and macOS / OSX on PyPi. If you are on one of these platforms, you should get a binary (precompiled) installation with:

pip install PyWavelets

Users of the Anaconda Python distribution may wish to obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pywavelets

Several Linux distributions have their own packages for PyWavelets, but these tend to be moderately out of date. Query your Linux package manager tool for python-pywavelets, python-wavelets, python-pywt or a similar package name.

If you want or need to install from source, you will need a working C compiler (any common one will work) and a recent version of Cython. Navigate to the PyWavelets source code directory (containing pyproject.toml) and type:

pip install .

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

The latest release, including source and binary packages for Intel Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

As of 2019, PyWavelets development is supported in part by Tidelift. Help support PyWavelets with the Tidelift Subscription

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

Report a security vulnerability: https://tidelift.com/security

License

PyWavelets is a free Open Source software released under the MIT license.

If you wish to cite PyWavelets in a publication, please use the following JOSS publication.

http://joss.theoj.org/papers/10.21105/joss.01237/status.svg

Specific releases can also be cited via Zenodo. The DOI below will correspond to the most recent release. DOIs for past versions can be found by following the link in the badge below to Zenodo:

https://zenodo.org/badge/DOI/10.5281/zenodo.1407171.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywavelets-1.6.0.tar.gz (3.9 MB view details)

Uploaded Source

Built Distributions

pywavelets-1.6.0-cp312-cp312-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pywavelets-1.6.0-cp312-cp312-win32.whl (4.2 MB view details)

Uploaded CPython 3.12 Windows x86

pywavelets-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pywavelets-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pywavelets-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0-cp312-cp312-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pywavelets-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pywavelets-1.6.0-cp311-cp311-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pywavelets-1.6.0-cp311-cp311-win32.whl (4.2 MB view details)

Uploaded CPython 3.11 Windows x86

pywavelets-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pywavelets-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pywavelets-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pywavelets-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pywavelets-1.6.0-cp310-cp310-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pywavelets-1.6.0-cp310-cp310-win32.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86

pywavelets-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pywavelets-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pywavelets-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pywavelets-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pywavelets-1.6.0-cp39-cp39-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pywavelets-1.6.0-cp39-cp39-win32.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86

pywavelets-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pywavelets-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pywavelets-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pywavelets-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pywavelets-1.6.0.tar.gz.

File metadata

  • Download URL: pywavelets-1.6.0.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pywavelets-1.6.0.tar.gz
Algorithm Hash digest
SHA256 ea027c70977122c5fc27b2510f0a0d9528f9c3df6ea3e4c577ca55fd00325a5b
MD5 d986559324a9896867a8eb8477694483
BLAKE2b-256 969bf124c8a8d1a69258a4d4d5cbb30a58dc059f836494cd3f067f419705bc72

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4ef15a63a72afa67ae9f4f3b06c95c5382730fb3075e668d49a880e65f2f089c
MD5 8923cd8af706446e57ca135325a11d9a
BLAKE2b-256 7a117cebd91be700652f786305754ef13cacfde4598c320b59cbe2c340e8c646

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e772f7f0c16bfc3be8ac3cd10d29a9920bb7a39781358856223c491b899e6e79
MD5 e6c9e7b4553c38e7571218d768bc13eb
BLAKE2b-256 a62e3a43ac2cfdb122614a0a1c68869f8497831bbacb012b2739c784a197b8fb

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd798cee3d28fb3d32a26a00d9831a20bf316c36d685e4ced01b4e4a8f36f5ce
MD5 83d6b5d4bb24fbaa54d8df8bfb1fb604
BLAKE2b-256 776e331f42142e5e4783e64286f31d31667017fb474cd2b263000a0204c79c22

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 67936491ae3e5f957c428e34fdaed21f131535b8d60c7c729a1b539ce8864837
MD5 61fd44bbd30be117cbf09be4dc49bb0f
BLAKE2b-256 15dbe79ad980f56481ae9d41c3fe1a744dc8d90ebd775860276db85d85f3870f

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 138471513bc0a4cd2ddc4e50c7ec04e3468c268e101a0d02f698f6aedd1d5e79
MD5 660ae6a63e47451ad90bbb0c6e58f660
BLAKE2b-256 3cc7aa29a95d3197404c1f2502f9154fc0d8ba5d8b5becd9f0c5f5ce285e1e0b

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47b0314a22616c5f3f08760f0e00b4a15b7c7dadca5e39bb701cf7869a4207c5
MD5 1f471d18c3bea7863e2dec46889e7780
BLAKE2b-256 f4629a1bacca3846e2b65d43103bad73a1540a210e3c4ad013b84b9c833acea9

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab652112d3932d21f020e281e06926a751354c2b5629fb716f5eb9d0104b84e5
MD5 08bff8905b2a1f11f1ba2fd26a7e4ea3
BLAKE2b-256 be9353db0d37cd5993be59409e9b7eac183400af3e9209b47999a6877b756987

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6ec113386a432e04103f95e351d2657b42145bd1e1ed26513423391bcb5f011
MD5 e3a999e581205c64d00e1318bc6450bf
BLAKE2b-256 685f12fc75debf47855f180c266c82fce66f83a738c684bb845f63a85ca42e6e

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 274bc47b289585383aa65519b3fcae5b4dee5e31db3d4198d4fad701a70e59f7
MD5 66ea23a852ef4b74e0b0b527dd621d3a
BLAKE2b-256 2197a4ed461234e9c9fa0a06f1618401e0660148819910ddd6501611bed133fe

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4ffb484d096a5eb10af7121e0203546a03e1369328df321a33ef91f67bac40cf
MD5 be7f7919a6b623ca08086fa4fa9961cc
BLAKE2b-256 fad489c211ca6150a373002303c9d9ef77e5bed8ccc58bf41acb25a5fff84f5f

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 48b3813c6d1a7a8194f37dbb5dbbdf2fe1112152c91445ea2e54f64ff6350c36
MD5 c65905ed67090935b2ff254ff1110c07
BLAKE2b-256 e400a19c4f9284b9a2b57e1e7ae195052aa267361beafa86d8f69816c830ed52

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 97ea9613bd6b7108ebb44b709060adc7e2d5fac73be7152342bdd5513d75f84e
MD5 df36d7a725661db592f0e2b77a21c992
BLAKE2b-256 0263af53bd581bbe17083218727561fae9db3f92a5e6e0fa141018b30da087d4

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ec7d69b746a0eaa327b829a3252a63619f2345e263177be5dd9bf30d7933c8d
MD5 093353f0dcabaafc405944a724ec3852
BLAKE2b-256 a78eb5f46eefc199592b48c4edea6117748e674b603de151e83d1e8896049293

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c5e655446e37a3c87213d5c6386b86f65c4d61736b4432d720171e7dd6523d6a
MD5 a3557f806ae5940f66fccb2ac454adb0
BLAKE2b-256 eff69e2734482abe865abf2cf57b1e76c2180cf268195e63ceb94699ed686f53

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b5302edb6d1d1ff6636d37c9ff29c4892f2a3648d736cc1df01f3f36e25c8cf
MD5 287c194a5b47ceb7555ce12ba1356f51
BLAKE2b-256 59feb22161950b56ce83309dfc342c4060957ce4c8a2f4b33b767068050cfd88

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d91aaaf6de53b758bcdc96c81cdb5a8607758602be49f691188c0e108cf1e738
MD5 503abf1782658bebed41a6cc90a936fe
BLAKE2b-256 fa45985b5f9b76d38ef8cf71bc89ad9e6b985931a3c68228eab77a59954375e3

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e2c44760c0906ddf2176920a2613287f6eea947f166ce7eee9546081b06a6835
MD5 5ddbfefbd25d5d38a68c4bc97b5cb840
BLAKE2b-256 f6f9359035b5d6ce2bc63d419c5920a2f2ec56192288e83c5fd0cb12e5abb3e6

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 47de024ba4f9df97e98b5f540340e1a9edd82d2c477450bef8c9b5381487128e
MD5 1781ba18d2dd0ef047ca6524dbb4bb57
BLAKE2b-256 0535b1cbea9e0aaf1759240be7e936f3cc1522b5fed8289c48863250eafb0cf5

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 538795d9c4181152b414285b5a7f72ac52581ecdcdce74b6cca3fa0b8a5ab0aa
MD5 d0614479589bbc6f629684ee4abd33a0
BLAKE2b-256 7c8b551363c22c4f8d3ceddbe54b346290a9af33a4566b0c4f1e263a1747508f

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 058a750477dde633ac53b8806f835af3559d52db6532fb2b93c1f4b5441365b8
MD5 6720070c8d801286d2ea9200a7b86860
BLAKE2b-256 4b9c288d7318cd91062869f1d494c10a57f1732293768afc75fa0ecb7a60b9f7

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0595c51472c9c5724fe087cb73e2797053fd25c788d6553fdad6ff61abc60e91
MD5 a6f64ec46869176e1978de876080e533
BLAKE2b-256 6e01a7157eec994747d3825df3e327365e072e5c80408000a358f2431cf91eb2

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be36f08efe9bc3abf40cf40cd2ee0aa0db26e4894e13ce5ac178442864161e8c
MD5 42778ce9b3948cce245055f48f73444a
BLAKE2b-256 0853aff7f7932b61c61a77a6432ed25717eb5aaf94143dabe7d2bba208ebfcd6

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78feab4e0c25fa32034b6b64cb854c6ce15663b4f0ffb25d8f0ee58915300f9b
MD5 326f7155e8f371dd4a0aa9af4349189e
BLAKE2b-256 9e00a6905c12ccbd1e7775fefe1fb8483e762b3ff1c30d90443166119bc3ca6e

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ddc1ff5ad706313d930f857f9656f565dfb81b85bbe58a9db16ad8fa7d1537c5
MD5 512cbae896441c5da18f66fc74723218
BLAKE2b-256 0d6b034e7b6b60cbe9df91f6542cf8e9a30d10bd25e23f1a1bc19145556eb1ac

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 32198de321892743c1a3d1957fe1cd8a8ecc078bfbba6b8f3982518e897271d7
MD5 fb764782094fec6c996c2654ba33e257
BLAKE2b-256 5c175da7f90673319b664025ade3e55d68ea2eb53bead6a8aece042a804977f2

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 42a22e68e345b6de7d387ef752111ab4530c98048d2b4bdac8ceefb078b4ead6
MD5 82ef03ff35d2659f66220c972ae0945c
BLAKE2b-256 c346ce31fab7866c41984a0ed76452c239ecaa3e70d9b32911167dd8e5ac72b4

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f58ddbb0a6cd243928876edfc463b990763a24fb94498607d6fea690e32cca4c
MD5 47ef41b32f31f23349288003c972fc46
BLAKE2b-256 7fce9964a6f611aca4d87af395d8bf1991ce209277ca5da12242b02296882710

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8fbf7b61b28b5457693c034e58a01622756d1fd60a80ae13ac5888b1d3e57e80
MD5 c765b0499f96773904df7065e5de1c5e
BLAKE2b-256 705a32ecb4a8b43745fbda380aafbcb0da51640aacf96c7f3cf4ab890d22f193

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4021ef69ec9f3862f66580fc4417be728bd78722914394594b48212fd1fcaf21
MD5 62164aa5da3062118e875d7af8213233
BLAKE2b-256 82ac2430589380ab236891481c2261b2743010927db10437cffe0329de342ffd

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be615c6c1873e189c265d4a76d1751ec49b17e29725e6dd2e9c74f1868f590b7
MD5 d237bead8b74c512d953b23202e8be70
BLAKE2b-256 0a51981d04e4c9b66565e0a2a1f394572f67bedeadaff9bf9282ef9b711d31b1

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a413b51dc19e05243fe0b0864a8e8a16b5ca9bf2e4713da00a95b1b5747a5367
MD5 fec5c42e915c9f2bedb96ef47a1c0e1f
BLAKE2b-256 02c5a225bfdf5532dfe4fbc823f1bb038949a4e7cd9d43a3ad23fe84cd365b98

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 627df378e63e9c789b6f2e7060cb4264ebae6f6b0efc1da287a2c060de454a1f
MD5 72c9fb6e3d23c0920f9e02af3074527b
BLAKE2b-256 2668e1453bd31c7c942e6ffcc0c71e7df488f36dfc16f8effef1f331a2e3c373

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page