A Python package for coherent gravitational wave burst analysis
Project description
PycWB
PycWB is a modularized Python package for gravitational wave burst search based on the core function of cWB. The documentation can be found at pycwb.readthedocs.io.
Installation
Install PycWB with pip
PycWB is available on PyPI. You can install it with pip. Some dependencies are required to be installed before installing pycWB with pip. The easiest way is to install them with conda.
conda create -n pycwb "python>=3.9,<3.11"
conda activate pycwb
conda install -c conda-forge root=6.26.10 healpix_cxx=3.81 nds2-client python-nds2-client lalsuite setuptools_scm cmake pkg-config
python3 -m pip install pycwb
Currently, pycWB is only available for x64 architecture. For Apple Silicon users, you can install the dependencies with the following commands:
# make sure rosetta is installed
softwareupdate --install-rosetta --agree-to-license
# Optional: export CONDA_BUILD=1
conda create -n pycwb
conda activate pycwb
conda config --env --set subdir osx-64
conda install -c conda-forge "python>=3.9,<3.11" root=6.26.10 healpix_cxx=3.81 nds2-client python-nds2-client lalsuite setuptools_scm cmake pkg-config ruamel.yaml htcondor
Install pycWB from source
conda create -n pycwb python
conda activate pycwb
conda install -c conda-forge root=6.26.10 healpix_cxx=3.81 nds2-client python-nds2-client lalsuite setuptools_scm cmake pkg-config
git clone git@git.ligo.org:yumeng.xu/pycwb.git
cd pycwb
make install
Usage
Example project can be found in examples
from pycwb.workflow.run import search
search('./user_parameters.yaml')
or run with command line
pycwb run ./user_parameters.yaml
Interactive tutorial
- Google Colab tutorial: pycWB_GW150914.ipynb
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pycwb-0.23.2.tar.gz
.
File metadata
- Download URL: pycwb-0.23.2.tar.gz
- Upload date:
- Size: 39.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96cb85e4d8f005b183f81cea16f620fd7ac136dff61c5d29db120f44581389b0 |
|
MD5 | dc138a22a61915e0e9481e16f08f864a |
|
BLAKE2b-256 | 091e3e08bde3739ea6ede5fecbaae8a8de5434d02bc70d43a895f8851c878f08 |