Skip to main content

A pytorch-based deep reinforcement learning package

Project description

Python-DRL

A pytorch-based deep reinforcement learning package. At present, I have implemented the following reinforcement learning algorithms: Deep Q-Network (DQN), Policy Gradient (PG), Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and Soft Actor-Critic (SAC).

Dependencies

numpy~=1.23.0
torch>=2.0.1
gym~=0.26.2
opencv-python>=4.5.5.62

Supported Python Versions

3.8
3.9
3.10

Install

pip install Python-DRL

Basic Usage Examples With Gym

python ./examples/cartpole-demo.py -m [train/test] -t [DQN/PPO/PG]
python ./examples/pendulum-demo.py -m [train/test] -t [DDPG/TD3/SAC]

Detailed Usage Guide

DQN

from DRL.dqn import DQN

DQN(n_states, n_actions, hidden_dim=64, critic_lr=1e-3, gamma=0.9, explore_intensity=100, replay_capacity=1000, replay_batch_size=32, target_update_freq=20, is_double_dqn=True, is_load=False, critic_path_name="dqn_critic_net.pkl", is_train=True)

PPO

from DRL.ppo import PPO

PPO(n_states, n_actions, hidden_dim=64, actor_lr=1e-4, critic_lr=1e-3, gamma=0.99, eps_clip=0.2, learn_epochs=20, is_load=False, actor_path_name="ppo_actor_net.pkl", critic_path_name="ppo_critic_net.pkl", is_train=True)

PG

from DRL.pg import PG

PG(n_states, n_actions, hidden_dim=64, actor_lr=1e-3, gamma=0.99, is_load=False, actor_path_name="pg_actor_net.pkl", is_train=True)

DDPG

from DRL.ddpg import DDPG

DDPG(n_states, n_actions, max_action, hidden_dim=300, actor_lr=1e-4, critic_lr=1e-3, gamma=0.99, tau=0.0005, learn_epochs=200, replay_capacity=1000000, replay_batch_size=100, is_load=False, actor_path_name="ddpg_actor_net.pkl", critic_path_name="ddpg_critic_net.pkl", is_train=True)

TD3

from DRL.td3 import TD3

TD3(n_states, n_actions, max_action, hidden_dim=300, actor_lr=1e-4, critic_lr=1e-3, gamma=0.99, tau=0.0005, learn_epochs=200, replay_capacity=1000000, replay_batch_size=100, is_load=False, actor_path_name="td3_actor_net.pkl", critic_path_name="td3_critic_net.pkl", is_train=True)

SAC

from DRL.sac import SAC

SAC(n_states, n_actions, max_action, hidden_dim=300, actor_lr=3e-3, critic_lr=3e-3, alpha_lr=3e-3, alpha=0.5, gamma=0.99, tau=0.005, replay_capacity=10000, replay_batch_size=100, automatic_entropy_tuning=True, is_load=False, actor_path_name="sac_actor_net.pkl", is_train=True)

Updates Log

  • 1.0.0
    • implemented DQN, PG, PPO, DDPG, TD3, and SAC

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Python-DRL-1.0.0.tar.gz (9.1 kB view hashes)

Uploaded Source

Built Distribution

Python_DRL-1.0.0-py3-none-any.whl (16.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page