Skip to main content

Auto metrics for evaluating generated questions

Project description

How to use

Our codes provide the ability to evaluate automatic metrics which concludes the ability to calculate automatic metrics. Please follow these steps to calculate automatic QG metrics and evaluate automatic metrics on our benchmark.

Enviroment

run pip install -r requirements.txt to install the required packages.

Calculate Automatic Metrics

  1. Prepare data

    Use the data we provided at ../data/scores.xlsx, or use your own data, which should provide passages, answers, and references.

  2. Calculate automatic metrics.

    • Download models at coming soon for metrics.

    • Update model path inside the codes. See QRelScore as an example.

      # update the path of mlm_model and clm_model
      def corpus_qrel(preds, contexts, device='cuda'):
          assert len(contexts) == len(preds)
          mlm_model = 'model/bert-base-cased'
          clm_model = 'model/gpt2'
          scorer = QRelScore(mlm_model=mlm_model,
                  clm_model=clm_model,
                  batch_size=16,
                  nthreads=4,
                  device=device)
          scores = scorer.compute_score_flatten(contexts, preds)
          return scores
      
    • Run python metrics.py to calculate your assigned metrics results by changing score_names in metrics.py. (data_path in each file should be changed into your own data path)

      # Run QRelScore and RQUGE based on our dataset
      # load data
      data_path = '../data/scores.xlsx'
      save_path = './result/metric_result.xlsx'
      data = pd.read_excel(data_path)
      hypos = data['prediction'].tolist()
      refs_list = [data['reference'].tolist()]
      contexts = data['passage'].tolist()
      answers = data['answer'].tolist()
      # scores to use
      score_names = ['QRelScore', 'RQUGE']
      
      # run metrics
      res = get_metrics(hypos, refs_list, contexts, answers, score_names=score_names)
      
      # handle results
      for k, v in res.items():
          data[k] = v
      print(data.columns)
      
      # save results
      data.to_excel(save_path, index=False)
      
    • or run the code file for specific metric to calculate. For example, run python qrel.py to calculate QRelScore results.

Evaluate Automatic Metrics

Run python coeff.py to obtain the Pearson, Spearman, and Kendall correlation coefficient between the generated results and the labeled results. For detailed process, please refer to readme of QGEval.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

QGEval_metrics-1.1.0.tar.gz (11.8 MB view details)

Uploaded Source

Built Distribution

QGEval_metrics-1.1.0-py3-none-any.whl (12.0 MB view details)

Uploaded Python 3

File details

Details for the file QGEval_metrics-1.1.0.tar.gz.

File metadata

  • Download URL: QGEval_metrics-1.1.0.tar.gz
  • Upload date:
  • Size: 11.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.10

File hashes

Hashes for QGEval_metrics-1.1.0.tar.gz
Algorithm Hash digest
SHA256 e825d57f8e6c0976eeab83f95035eee3a5c42fa5de459da418ad7f6f43d429bb
MD5 c22bd827f27109037c43303de754c16b
BLAKE2b-256 e18dd88a99c29d1a9789c77b4ab3b9a624b481cb1336c38dafe5f5254f8fc587

See more details on using hashes here.

File details

Details for the file QGEval_metrics-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for QGEval_metrics-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a7efb61348c220758919c9695f40eb7f8d437789715ba38a815105d1e0b06925
MD5 ba3418e14ad4d8505e4cffa3347bccf8
BLAKE2b-256 18f70133b7b129cee55e6e3c51c3a1c60d8f8d6865a469da688f7e66fe1ed502

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page