Skip to main content

A quantum computing simulator for Python

Project description

PyPI PyPI - License PyPI - Python Version Doc


A quantum computing simulator for Python.

The QSystem simulator is inspired in the quantum circuit model, so it's easy to convert any quantum circuit to Python.

Like the follow example:


from qsystem import QSystem
from cmath import exp, pi
q = QSystem(3, 24)                        # init q0, q1, q2

q.evol(gate='H', qbit=0, count=3)         # H q0; H q1; H q2
q.add_ancillas(4)                         # init a0, a1, a2, a3
q.evol(gate='X', qbit=6)                  # X a3
q.cnot(target=4, control=[2])             # CNOT a1, q2
q.cnot(5, [2])                            # CNOT a2, q2
q.cnot(5, [3])                            # CNOT a2, a0
q.cnot(3, [1, 5])                         # Toffoli a1, q1, a2
q.cnot(5, [3])                            # CNOT a2, a0
q.cnot(4, [6])                            # CNOT a1, a3
q.cnot(6, [1, 4])                         # Toffoli a3, q1, a1
q.cnot(4, [6])                            # CNOT a1, a3

q.measure(qbit=3, count=4)                # measure a0, a1, a2, a3
print('ancillas measurement =', q.bits()[3:])
# ancillas measurement = [0, 1, 0, 0]
q.rm_ancillas()                           # rm a0, a1, a2, a3

q.evol('H', 0)                            # H q0                ┐
q.cphase(phase=1j, target=1, control=[0]) # Controlled S q1, q0 │
q.evol('H', 1)                            # H q1                │
q.cphase(exp(pi*1j/4), 2, [0])            # Controlled T q2, q0 │ = q.qft(0, 3)
q.cphase(1j, 2, [1])                      # Controlled S q2, q1 │
q.evol('H', 2)                            # H q1                │
q.swap(0, 2)                              # SWAP q0, q2         ┘

q.measure(0, 3)                           # measure q0, q1, q2
print('final measurement =', q.bits())
# final measurement = [1, 0, 0]


QSystem depends on Boost C++ Libraries and requires a C/C++ compiler.

To install use the follow command:

pip install QSystem

Bitwise representation

The current release has three distinct ways to represent the quantum state: vector, matrix, and the proposed bitwise. The latter is a new way to store and manipulate both states and operations which shows an exponential advantage with the amount of superposition in the systems state.

For more information see our paper arXiv:2004.03560.

    title={QSystem: bitwise representation for quantum circuit simulations},
    author={Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani},

Seed the API documentation.

This software is supported by FEPESC

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for QSystem, version 1.2.0.post1
Filename, size File type Python version Upload date Hashes
Filename, size QSystem-1.2.0.post1.tar.gz (644.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page