QuantileRegression package based on SciPy optimization routines.
Project description
Quantile Regression
This repository is for Python implementations of basic Quantile Regression routines.
References
Articles, books
[RK1] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.
[RK2] Roger Koenker, "Quantile Regression in R: a vignette", (2006), CRAN.
[AA1] Anton Antonov, "A monad for Quantile Regression workflows", (2018), MathematicaForPrediction at GitHub.
Packages, paclets
[RKp1] Roger Koenker,
quantreg
,
CRAN.
[AAp1] Anton Antonov, Quantile Regression WL paclet, (2014-2023), GitHub/antononcube.
[AAp2] Anton Antonov, Monadic Quantile Regression WL paclet, (2018-2024), GitHub/antononcube.
[AAp3] Anton Antonov,
QuantileRegression
,
(2019),
Wolfram Function Repository.
Repositories
[AAr1] Anton Antonov, DSL::English::QuantileRegressionWorkflows in Raku, (2020), GitHub/antononcube.
Videos
[AAv1] Anton Antonov, "Boston useR! QuantileRegression Workflows 2019-04-18", (2019), Anton Antonov at YouTube.
[AAv2] Anton Antonov, "useR! 2020: How to simplify Machine Learning workflows specifications", (2020), R Consortium at YouTube.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quantileregression-0.1.4.tar.gz
.
File metadata
- Download URL: quantileregression-0.1.4.tar.gz
- Upload date:
- Size: 5.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6b8813efca354dccee1aa96fe8824d0d2a61774f1fc31ee0e2ae9b88de0d46f |
|
MD5 | a2c7ac6a07884c9e0b504e4d4d62e4d5 |
|
BLAKE2b-256 | 48afd1ac787c9ea5cce2a8b6aaf97a770daefec4d2faa1fc675517eb79cbc3ac |
File details
Details for the file QuantileRegression-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: QuantileRegression-0.1.4-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49e4d824376dd2f480da3a57354a342d6df57dc437d4eb4667c834276d5055e8 |
|
MD5 | 1e91e979708265f339b7b021d44478c6 |
|
BLAKE2b-256 | dc4528a08a6c36238ec10ac2ca930e460acc87740f3965cb7ddf33338c449c98 |