Skip to main content

QuantileRegression package based on SciPy optimization routines.

Project description

Quantile Regression

This repository is for Python implementations of basic Quantile Regression routines.

References

Articles, books

[RK1] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.

[RK2] Roger Koenker, "Quantile Regression in R: a vignette", (2006), CRAN.

[AA1] Anton Antonov, "A monad for Quantile Regression workflows", (2018), MathematicaForPrediction at GitHub.

Packages, paclets

[RKp1] Roger Koenker, quantreg, CRAN.

[AAp1] Anton Antonov, Quantile Regression WL paclet, (2014-2023), GitHub/antononcube.

[AAp2] Anton Antonov, Monadic Quantile Regression WL paclet, (2018-2024), GitHub/antononcube.

[AAp3] Anton Antonov, QuantileRegression, (2019), Wolfram Function Repository.

Repositories

[AAr1] Anton Antonov, DSL::English::QuantileRegressionWorkflows in Raku, (2020), GitHub/antononcube.

Videos

[AAv1] Anton Antonov, "Boston useR! QuantileRegression Workflows 2019-04-18", (2019), Anton Antonov at YouTube.

[AAv2] Anton Antonov, "useR! 2020: How to simplify Machine Learning workflows specifications", (2020), R Consortium at YouTube.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantileregression-0.1.4.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

QuantileRegression-0.1.4-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file quantileregression-0.1.4.tar.gz.

File metadata

  • Download URL: quantileregression-0.1.4.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for quantileregression-0.1.4.tar.gz
Algorithm Hash digest
SHA256 e6b8813efca354dccee1aa96fe8824d0d2a61774f1fc31ee0e2ae9b88de0d46f
MD5 a2c7ac6a07884c9e0b504e4d4d62e4d5
BLAKE2b-256 48afd1ac787c9ea5cce2a8b6aaf97a770daefec4d2faa1fc675517eb79cbc3ac

See more details on using hashes here.

File details

Details for the file QuantileRegression-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for QuantileRegression-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 49e4d824376dd2f480da3a57354a342d6df57dc437d4eb4667c834276d5055e8
MD5 1e91e979708265f339b7b021d44478c6
BLAKE2b-256 dc4528a08a6c36238ec10ac2ca930e460acc87740f3965cb7ddf33338c449c98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page