R2CCP Package for Conformal Prediction
Project description
Overview
This is a library for generating prediction sets for machine learning regression tasks. We do this by first converting regression to a classification problem (divide the output space into 50 bins) and then using CP techniques for classification to obtain a conformal set.
Installation
You can install by using pip.
pip install R2CCP
Get Started
Our example file (example.py) provides a simple demonstration of how to use our R2CCP class for conformal prediction. At a high level, the basic steps are instantiating the model class, fitting against data, and analyzing the results.
# Import the model
from R2CCP.main import R2CCP
# Instiantiate the model
model = R2CCP({'model_path':'model_paths/model_save_destination.pth', 'max_epochs':5})
// model_path is where to save the trained model output (required parameter)
# Fit against the data
model.fit(X_train, y_train)
# Analyze the results
intervals = model.get_intervals(X_test)
coverage, length = model.get_coverage_length(X_test, Y_test)
print(f"Coverage: {np.mean(coverage)}, Length: {np.mean(length)}")
# If you don't have labels, you can just use get_length
length = model.get_length(X_test)
# Get model predictions
predictions = model.predict(X_test)
# You can also change the desired coverage level
model.set_coverage_level(.8)
new_coverage, new_length = model.get_coverage_length(X_test, Y_test)
print(f"New Coverage: {np.mean(coverage)}, New Length: {np.mean(length)}")
Here, we give a small example on a regression problem. We first generate a synthetic dataset of features of labels. We then generate the conformal intervals from this dataset.
from R2CCP.main import R2CCP
import numpy as np
X_train = np.random.rand(10, 1)
Y_train = 2 * X_train + 1 + 0.1 * np.random.randn(10, 1)
X_test = np.random.rand(10, 1)
Y_test = 2 * X_test + 1 + 0.1 * np.random.randn(10, 1)
model = R2CCP({'model_path':'model_paths/model_save_destination.pth', 'max_epochs':5})
model.fit(X_train, Y_train)
intervals = model.get_intervals(X_test)
coverage, length = model.get_coverage_length(X_test, Y_test)
print(f"Coverage: {np.mean(coverage)}, Length: {np.mean(length)}")
R2CCP Parameters
The R2CCP class can be instantiated with a variety of different parameters. Here is an overview of all the available options.
- model_path (string): File path to save trained model to (ex. path/file_name.pth)(Required)
- early_stopping (bool): Enable early stopping (default: False). Uses Pytorch Lightning EarlyStopping. Set custom configuration in R2CCP/models/callbacks.py
- save_path (str): Where to save the model (default: None)
- alpha (float): Alpha parameter (default: 0.1).
- annealing (bool): Enable annealing (default: False).
- annealing_epochs (int): Annealing epochs (default: 500).
- weight_decay (float): Weight decay (default: 0.0).
- ffn_activation (str): Activation function for the FFN. Choices: ['relu', 'sigmoid'] (default: 'relu').
- ffn_hidden_dim (int): Number of nodes in FFN hidden layers (default: 256).
- transformer_hidden_dim (int): Number of nodes in transformer hidden layers (default: 256). In development
- ffn_num_layers (int): Number of layers in FFN (default: 3).
- transformer_num_layers (int): Number of layers in transformer (default: 3). In development
- lq_norm_val (float): Lq norm value (default: .5).
- transformer_num_heads (int): Number of heads in transformer (default: 8). In development
- dropout_prob (float): Dropout probability (default: 0).
- lr_scheduler (str): Learning rate scheduler. Choices: ['cosine', 'cosine_warmup', 'linear', 'step', 'absent'] (default: 'cosine').
- batch_size (int): Batch size (default: 32).
- bias (bool): Use bias (default: True).
- max_epochs (int): Maximum epochs (default: 1000).
- seed (int): Random seed (default: 0).
- cal_size (float): Calibration size (default: 0.2).
- optimizer (str): Optimization algorithm (default: 'adam', options =['adam', 'adamw', 'sgd']).
- range_size (int): Range size (default: 50).
- lr (float): Learning rate (default: 1e-3).
- constraint_weights (list of float): List of constraint weights.
- num_workers (int): Number of workers (default: 4).
Note: Transformer integration is still in development
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file R2CCP-0.0.8-py3-none-any.whl
.
File metadata
- Download URL: R2CCP-0.0.8-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 116f39e01d7a63bb77a9940ba74a6e2d196492255cd0d544b3d71aa2086ec856 |
|
MD5 | 396bb8eb883d8cb7b11ce92d5e7fc8d8 |
|
BLAKE2b-256 | 4a7b532238706496a1cd6c0fbce85d59894092c8e8ffd31a7bcee8cb7c957471 |