Skip to main content

R2CCP Package for Conformal Prediction

Project description

Overview

This is a library for generating prediction sets for machine learning regression tasks. We do this by first converting regression to a classification problem (divide the output space into 50 bins) and then using CP techniques for classification to obtain a conformal set.

Installation

You can install by using pip.

pip install R2CCP

Get Started

Our example file (example.py) provides a simple demonstration of how to use our R2CCP class for conformal prediction. At a high level, the basic steps are instantiating the model class, fitting against data, and analyzing the results.

# Import the model
from R2CCP.main import R2CCP

# Instiantiate the model
model = R2CCP({'model_path':'model_paths/model_save_destination.pth', 'max_epochs':5})
// model_path is where to save the trained model output (required parameter)

# Fit against the data
model.fit(X_train, y_train)

# Analyze the results
intervals = model.get_intervals(X_test)
coverage, length = model.get_coverage_length(X_test, Y_test)
print(f"Coverage: {np.mean(coverage)}, Length: {np.mean(length)}")

# If you don't have labels, you can just use get_length
length = model.get_length(X_test)

# Get model predictions
predictions = model.predict(X_test)

# You can also change the desired coverage level
model.set_coverage_level(.8)
new_coverage, new_length = model.get_coverage_length(X_test, Y_test)
print(f"New Coverage: {np.mean(coverage)}, New Length: {np.mean(length)}")

Here, we give a small example on a regression problem. We first generate a synthetic dataset of features of labels. We then generate the conformal intervals from this dataset.

from R2CCP.main import R2CCP
import numpy as np
X_train = np.random.rand(10, 1)
Y_train = 2 * X_train + 1 + 0.1 * np.random.randn(10, 1)
X_test = np.random.rand(10, 1)
Y_test = 2 * X_test + 1 + 0.1 * np.random.randn(10, 1)

model = R2CCP({'model_path':'model_paths/model_save_destination.pth', 'max_epochs':5})
model.fit(X_train, Y_train)

intervals = model.get_intervals(X_test)
coverage, length = model.get_coverage_length(X_test, Y_test)
print(f"Coverage: {np.mean(coverage)}, Length: {np.mean(length)}")

R2CCP Parameters

The R2CCP class can be instantiated with a variety of different parameters. Here is an overview of all the available options.

  • model_path (string): File path to save trained model to (ex. path/file_name.pth)(Required)
  • early_stopping (bool): Enable early stopping (default: False). Uses Pytorch Lightning EarlyStopping. Set custom configuration in R2CCP/models/callbacks.py
  • save_path (str): Where to save the model (default: None)
  • alpha (float): Alpha parameter (default: 0.1).
  • annealing (bool): Enable annealing (default: False).
  • annealing_epochs (int): Annealing epochs (default: 500).
  • weight_decay (float): Weight decay (default: 0.0).
  • ffn_activation (str): Activation function for the FFN. Choices: ['relu', 'sigmoid'] (default: 'relu').
  • ffn_hidden_dim (int): Number of nodes in FFN hidden layers (default: 256).
  • transformer_hidden_dim (int): Number of nodes in transformer hidden layers (default: 256). In development
  • ffn_num_layers (int): Number of layers in FFN (default: 3).
  • transformer_num_layers (int): Number of layers in transformer (default: 3). In development
  • lq_norm_val (float): Lq norm value (default: .5).
  • transformer_num_heads (int): Number of heads in transformer (default: 8). In development
  • dropout_prob (float): Dropout probability (default: 0).
  • lr_scheduler (str): Learning rate scheduler. Choices: ['cosine', 'cosine_warmup', 'linear', 'step', 'absent'] (default: 'cosine').
  • batch_size (int): Batch size (default: 32).
  • bias (bool): Use bias (default: True).
  • max_epochs (int): Maximum epochs (default: 1000).
  • seed (int): Random seed (default: 0).
  • cal_size (float): Calibration size (default: 0.2).
  • optimizer (str): Optimization algorithm (default: 'adam', options =['adam', 'adamw', 'sgd']).
  • range_size (int): Range size (default: 50).
  • lr (float): Learning rate (default: 1e-3).
  • constraint_weights (list of float): List of constraint weights.
  • num_workers (int): Number of workers (default: 4).

Note: Transformer integration is still in development

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

R2CCP-0.0.8-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file R2CCP-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: R2CCP-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for R2CCP-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 116f39e01d7a63bb77a9940ba74a6e2d196492255cd0d544b3d71aa2086ec856
MD5 396bb8eb883d8cb7b11ce92d5e7fc8d8
BLAKE2b-256 4a7b532238706496a1cd6c0fbce85d59894092c8e8ffd31a7bcee8cb7c957471

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page