Skip to main content

REVEALER#TODO

Project description

eREVEALER

eREVEALER (enhanced REpeated eValuation of variablEs conditionAL Entropy and Redundancy) is a powerful method for identifying groups of genomic alterations that, together, associate with functional activation, gene dependency, or drug response profiles. By combining these alterations, eREVEALER explains a larger fraction of samples displaying functional target activation or sensitivity than any individual alteration considered in isolation. eREVEALER extends the capabilities of the original REVEALER by handling larger sample sizes with significantly higher speed.

Preprint is avaiable here

Alt text

Overview

eREVEALER consists of two main components: REVEALER preprocess and REVEALER run.

  • REVEALER preprocess: If you start with a MAF file or a GCT file that needs further filtering, run REVEALER preprocess first and use its output as the input for REVEALER run.
  • REVEALER run: If you have a ready-to-use GCT format matrix, you can directly run REVEALER run.

For detailed documentation regarding each parameter and workflow, refer to the individual documentation for REVEALER_preprocess and REVEALER.

Installation

Install via pip

eREVEALER can be used in command line, Jupyter Notebook, and GenePattern. To use eREVEALER in command line or Jupyter Notebook, install it via pip:

pip install revealer

Install via cloning the repository

Alternatively, you can install eREVEALER by cloning the repository and running the setup script.

  1. Clone the repository:

    git clone https://github.com/yoshihiko1218/REVEALER.git
    cd REVEALER
    
  2. Install the dependencies:

    pip install -r requirements.txt
    
  3. Install the package:

    python setup.py install
    

Testing installation with an example

After you finish installing, you can test REVEALER by running

```bash
REVEALER test 
```

This will take approximately an hour.

Jupyter notebook Usage

Detailed example of using eREVEALER in Jupyter Notebook can be found here. eREVEALER is also available in GenePattern, allowing you to run it directly on the GenePattern server. More details can be found [here](link to genepattern module to be added).

Command line Usage

The preprocessing step offers various modes, which are explained in detail in the GenePattern documentation. Below are example commands for different modes.

Here is the command-line version of the example found here.

Download Example Input File

First, download the example input file for the CCLE dataset MAF file from this link: DepMap Public 23Q2 OmicsSomaticMutations.csv. Save it to the sample_input folder (or another location, as long as you indicate the path in the command).

Run File Preprocessing

REVEALER preprocess \
    --mode class \
    --input_file example/sample_input/OmicsSomaticMutations.csv \
    --protein_change_identifier ProteinChange \
    --file_separator , \
    --col_genename HugoSymbol \
    --col_class VariantType \
    --col_sample ModelID \
    --prefix CCLE \
    --out_folder example/sample_input/CCLE \
    --mode mutall

Convert Annotation from DepMap to CCLE

python example_notebook/DepMapToCCLE.py example/sample_input/NameConvert.csv example/sample_input/CCLE_Mut_All.gct example/sample_input/CCLE_Mut_All_rename.gct

Run REVEALER with Generated File and NFE2L2 Signature

REVEALER run \
    --target_file example_notebook/sample_input/CCLE_complete_sigs.gct \
    --feature_file example_notebook/sample_input/CCLE_Mut_All_rename.gct \
    --out_folder example_notebook/sample_output/NRF2 \
    --prefix CCLE_NRF2 \
    --target_name NFE2L2.V2 \
    --if_pvalue False \
    --if_bootstrap False \
    --gene_locus example_notebook/sample_input/allgeneLocus.txt \
    --tissue_file example_notebook/sample_input/TissueType_CCLE.gct

Contributing

If you would like to contribute to eREVEALER, please submit a pull request or report issues on our GitHub repository.

License

eREVEALER is licensed under the MIT License. See the LICENSE file for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

REVEALER-2.1.3.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

REVEALER-2.1.3-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

File details

Details for the file REVEALER-2.1.3.tar.gz.

File metadata

  • Download URL: REVEALER-2.1.3.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for REVEALER-2.1.3.tar.gz
Algorithm Hash digest
SHA256 8ef5c3668d9e3af638c675c516702ae3f115364cb4445b4d16e6c196ce5cad06
MD5 fd4a3dcc1d8342bee4b7bfb4997114ae
BLAKE2b-256 dfc79ce9deac3cd16bd9a4fafcc0f150c6fad38c957c28823c8c0df4d04b2c66

See more details on using hashes here.

File details

Details for the file REVEALER-2.1.3-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for REVEALER-2.1.3-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ac20a27dc8ad3355b4fdbbca09aae4bfe8b1b9da642688cad48dedded7f05379
MD5 4e013d41bf7797aa5b84fb0803eff2e3
BLAKE2b-256 cdad37fc5e623753b1a1550d7ea89faaea81307c8bc74533a86e35be47ef5a76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page